Что такое адаптивная коробка передач и как она работает

Что такое адаптивная коробка передач и как она работает

Автоматизированную коробку передач можно также назвать и адаптивной, или же коробкой-автомат.

Чтобы Вы могли передвигаться с удобством, умный компьютер возьмет во внимание все, что необходимо учесть. Он среагирует на Вашу манеру разгона и, если Вы любите делать это быстро, мгновенно переключится на спортивный режим вождения. Компьютер подстроится под тип Вашего вождения, поймет, как Вам привычнее тормозить. Он грамотно подберет для Вас необходимую в каждой конкретной ситуации передачу.

Самостоятельный сброс адаптации, обращение к специалистам

Каждая модель адаптивной автоматической коробки требует соблюдения определенной процедуры обнуления (сброса) адаптации. Так, для автоматической коробки серии 722.6 (собственного производства «Мерседес») для сброса адаптации достаточно:

  • повернуть ключ зажигания на два щелчка (не заводя двигатель);
  • на 30 секунд выжать педаль газа до упора;
  • выключить зажигание, выждать пять минут (не открывая дверей);
  • вынуть ключ, нажать акселератор;
  • завести двигатель.

Такие же операции необходимы для сброса адаптации у автоматических коробок кроссовера «БМВ Х5». После обнуления самостоятельная адаптация коробки потребует 40 переключений.

При отсутствии точных сведений об операциях сброса (для определенной модели коробки) эта процедура не опасна, но бессмысленна. Начинающим водителям для изменения адаптационных настроек лучше обратиться в автосервис. Специалисты проведут приборные изменения (дилерским компьютерным сканером) настроек блока управления автоматической коробкой, выставят исходные параметры переключения передач в движении.

Адаптация коробки-автомат требуется для многих легковых транспортных средств после капремонта узла АКПП, замены регуляторов и других деталей, перед запуском в эксплуатацию нулевой машины. Понятие включает настройку основных параметров. А также эта процедура направлена на оптимизацию рабочих режимов, улучшение функционирования узла. Однако важно знать, что адаптация АКПП не заменяет собой ремонт коробки. В большинстве своём она только улучшает её работу, но если проблема заключается непосредственно в самом узле, то через время она вновь проявится, может повлечь более серьёзные неполадки в системе.



когда производить адаптацию акпп

Капитальный ремонт автоматической коробки передач, замена АКПП, замена или ремонт двигателя

Последствия: После капитального ремонта АКПП в обязательном порядке необходимо производить адаптацию, для корректной работы автоматической коробки.

Ремонт или замена блока клапанов (гидроблока)

Последствия: После ремонта гидроблока необходимо произвести адаптацию АКПП для нормализации давления и правильной работы клапанов.

Обновление/калибровка программного обеспечения модуля ЭБУ, замена блока управления АКПП

Последствия: После любых манипуляций с ПО необходимо произвести адаптацию АКПП для корректной работы коробки передач.

Техническое обслуживание АКПП, замена масла в автоматической коробке передач

Последствия: МПосле замены масла в АКПП нужно произвести адаптацию, для корректной работы в соответствии с новым давлением и плотностью масла.

Адаптивная коробка передач видео

В следующем видео можно посмотреть, как пользоваться автоматической коробкой передач. В ней нет ничего сложного, все просто и понятно. Итак, внимание на экран:

Пользуясь автоматом можно быстро и удобно передвигаться как в городе, так и за его пределами. Конечно, механическая коробка передач позволяет Вам переключаться как угодно, однако автомат упрощает движение и освобождает Вас от постоянного держания руки на рычаге переключения скоростей.

Вывод: адаптивная коробка передач – это АКПП со специальной электроникой, которая запоминает действия водителя, переключает передачи в удобном стиле и упрощает движение.



как понять, что необходима адаптация акпп

Задержка переключения передач, удары при переключении передач

Причины: Износ фрикционов и изменение качества масла приводят к нестабильной работе АКПП.
Решение: Адаптация АКПП

При покупке автомобиля на вторичном рынке

Причины: Во время эксплуатации коробка адаптируется под манеру вождения определенного человека, при смене владельца(водителя) следует произвести адаптацию.
Решение: Адаптация АКПП

При частой езде в пробках

Причины: При частой езде в пробках адаптацию АКПП следует производить каждые 30ткм.
Решение: Адаптация АКПП

Примеры адаптации дроссельной заслонки на автомобилях группы VAG и Lancer IX

В данном видео, вам расскажут и покажут как провести адаптацию заслонки для автомобиля марки VAG.

Адаптация ДЗ на Volkswagen Golf 4:

  • Прогреваем двигатель до t=80 0 C и глушим авто. Затем подсоединяем кабель USB-KKL к диагностическому разъему и после включения зажигания запускаем программу диагностики (VAG-COM 3.11).
  • Входим в раздел 01-двигатель.
  • Проводим опрос памяти неисправностей (02).
  • Обнаруженные неисправности стираем (05).
  • После возврата в предыдущее меню, входим в раздел «адаптация-10».
  • При значении группы 001 нажимаем «запуск».
  • Ожидаем 2-3 минуты, после закрываем программу и отсоединяем кабель. Адаптация завершена.

Адаптация ДЗ автомобилей Nissan с электронной педалью газа:

  • Включаем зажигание не меньше чем на 2 сек.
  • Отключаем зажигание. Процедура адаптации педали акселератора завершена.
  • Проводим адаптацию заслонки дросселя. Педаль акселератора отпущена.
  • Включаем зажигание и моментально выключаем. Ожидаем не меньше 10 сек. В этот период времени происходит перемещение заслонки.
  • Обучаем подаче воздуха на холостых оборотах (ХХ).
  • Прогреваем двигатель и КПП до рабочей температуры.
  • Отключаем все электрическое оборудование автомобиля.
  • Запускаем двигатель и доводим его температуру до рабочей.
  • Отключаем зажигание и ожидаем не меньше 10 сек.
  • Полностью отпускаем педаль акселератора.
  • Включаем зажигание и ожидаем не меньше 3 сек.
  • В течение 5 сек, осуществляем пятикратное нажатие на педаль акселератора, после чего выжидаем 7 секунд.
  • Нажав на педаль акселератора, держим ее, пока ЧЕК не перестанет мигать, и не станет гореть постоянно (необходимо времени около 20 сек).
  • После того, как ЧЕК загорелся постоянно, в течение 3 сек необходимо отпустить педаль.
  • Запускаем двигатель для работы на ХХ.
  • Нажимаем несколько раз на педаль для проверки устойчивости ХХ.

Адаптация ДЗ на VW Passat B5:

  • Прогреваем двигатель до рабочей температуры и глушим авто.
  • Включаем зажигание, но двигатель не заводим.
  • Подсоединяем кабель к диагностическому разъему и запускаем программу.
  • Входим в раздел 01-двигатель.
  • Входим в базовые установки (04).
  • Выбираем в адаптации заслонки – 060 для автомобилей с электронным управлением заслонкой, и значение 098 для автомобилей с тросовой регулировкой заслонки.
  • Запускаем адаптацию.
  • Ждем появления записи на экране «ADP RUN» и последующей записи «ADP OK».
  • Возвращаемся в базовые установки.
  • Выключаем зажигание. Адаптация завершена.

Адаптация дроссельной заслонки Mitsubishi Lancer IX:

  • Прогреваем двигатель автомобиля.
  • Подключаем к диагностическому разъему сканер ScanDoc. Значения РХХ=0.
  • Искусственным путем восстанавливаем тепловой зазор в заслонке (например, используем смесь солидола с отработкой масла).
  • Заводим двигатель и ожидаем установки устойчивых оборотов ХХ.
  • В сканере запускаем режим «Sas mode» и регулируем положение РХХ во время адаптации.
  • Если включении режима «Sas mode» двигатель заглох, то выкручиваем винт РХХ, чтобы увеличить обороты двигателя на ХХ;
  • Устанавливаем обороты в пределах 750-800 об/мин.
  • Во время адаптации шаги РХХ устанавливаются со значением 4-7;
  • Принудительно завершаем процесс адаптации и глушим двигатель.
  • Запускаем двигатель и проверяем РХХ. Если адаптация прошла успешно, то шаги РХХ будут равны 27-28.

Адаптация ДЗ на Audi A4:

  • Прогреваем двигатель до t=80 0 C и глушим авто. Затем подсоединяем кабель к диагностическому разъему и после включения зажигания запускаем программу диагностики (VAG-COM).
  • Входим в раздел 01-двигатель.
  • Входим в раздел «адаптация-10».
  • На канале 00 нажимаем кнопку «читать».
  • Сохраняем результат и возврат к заводским установкам.
  • Вход в базовые установки (04) и переходим к режиму измерений.
  • Вводим значение канала 098, запуск адаптации.
  • Ожидаем сообщение о завершении процесса адаптации.
  • Возвращаемся в исходный раздел. Закрываем программу и отсоединяем кабель.

. Как сделать всё правильно, подскажет наш сайт.

Как установить автомобильный звук своими руками, можно узнать . Советуем всем!

Из этой , вы узнаете, сколько стоит антикоррозийная обработка днища автомобиля.

ПОЧЕМУ tor motors?

Наша компания является лидером по агрегатному ремонту (двигатели, трансмиссия, рулевое управление, системы турбонаддува), так же мы осуществляем адаптацию АКПП, других агрегатов, чип-тюнинг и программирование ЭБУ в Краснодаре.

Мастера сервис центра TOR MOTORS в Краснодаре произведут качественную адаптацию АКПП, учитывая регламент завода производителя. Наш автосервис имеет все необходимое оборудование, для осуществления диагностики и адаптации АКПП автомобилей. Все работы производятся в оборудованном агрегатном цехе.

Первый рабочий день.

Переступив порог новой компании, кандидат прямиком направляется в отдел по работе с персоналом, где происходит оформление и ознакомление со всеми ЛНА. Welcome-тренинг отличный способ быстро рассказать кандидату о истории развития компании, место на рынке, достижения, а также о корпоративной политике в отношении управления персонала. После чего специалист по охране труда проводит вводный инструктаж.

Далее сотрудник службы по работе с персоналом проводит нового сотрудника на рабочее место, где руководитель знакомит новичка с коллегами, наставником и планом адаптации. Наставник не просто вводит сотрудника в должность, а еще и рассказывает о не провесных правилах в компании.

Преимущества и недостатки

Нет предела совершенству. И нынешние адаптивные коробки уж точно далеки от идеала. Потребуется ещё достаточно много времени, чтобы удалось достичь оптимального результата в работе этих трансмиссий.

Читайте также:  Всегда ли нужна регистрация фаркопа на легковой автомобиль в ГИБДД? Правила оформления и нюансы

Если же говорить об актуальных адаптивных автоматах, можно выделить несколько главных достоинств:

  • Способность создавать комфортные условия в процессе эксплуатации транспортного средства;
  • Переключение скоростей осуществляется в определённых запрограммированных алгоритмах, при выборе одного из которых учитывается скорость движения, состояние покрытия, интенсивность работы педалями и пр.;
  • Режимы меняются самостоятельно. Водителю не нужно нажимать какие-то кнопки или рычаги;
  • Минимальное количество кнопок и регуляторов на коробке;

Способность снижать расход топлива, что обеспечивается подбором передач и режимов работы.

Но не всё так идеально. У адаптивных автоматических трансмиссий есть и свои недостатки. Главным минусом называют несовершённость системы адаптации, которая не всегда способна правильно подстроиться под требования водителя. Это ярко проявляется, когда один режим движения сменяется другим. К примеру, когда водитель двигался в медленном плотном трафике, а затем выехал на свободную трассу и захотел больше динамики. Либо же наоборот. На перестройку и адаптирование уходит некоторое время, исчисляемое порой несколькими минутами или километрами.

Читать далее: Моторное масло Шелл Хеликс преимущества и особенности Shell Helix Ultra 5w40

Также адаптивная система не всегда показывает себя с лучшей стороны при движении по плохим дорогам, где происходят довольно резкие переходы с нормального покрытия на разные неровности, ухабы и ямы, которые требуется объезжать и маневрировать.

Ещё одним недостатком можно считать вопрос обслуживания. В российских условиях наблюдаются некоторые проблемы с обслуживанием и поиском запчастей. Поскольку адаптивные АКПП являются фактически разновидностью коробок автомат, но с более сложной электроникой, отыскать и приобрести некоторые детали бывает проблематично. На это требуется больше времени и финансовых средств.

Возможные проблемы эксплуатации

Адаптивная коробка – это устройство, в функцию которого входит поддержание комфортных условий при передвижении. Она подстраивается под скорость езды, а также индивидуальные особенности вождения.

Важно помнить, что если передвижение совершается по городу и приходится стоять продолжительное время в пробках, данный вид коробки запоминает именно данный режим.

Учитывая это, во время езды по трассе, будет отмечаться ухудшение динамики хода. Выход в данной ситуации – самостоятельное «переобучение» адаптивной коробки к нужному режиму. Специально для этого стоит проехать несколько км в одном темпе.

Способствует продлению рабочего ресурса коробки – замена трансмиссионного масла. Подбирать нужно жидкость той марки, которая должна соответствовать типу КПП. Количество трансмиссионного масла возможно проверить используя специальный щуп. Среди признаков того, что адаптивная коробка дала сбой, следует выделить появление шумов и посторонних стуков. При наличии любого из указанных симптомов требуется обязательная диагностика транспортного средства в сервисном центре. В противном случае понадобится проведение серьезного капитального ремонта.

Для того чтобы данный тип адаптивной коробки продолжительное время не терял своих функциональных способностей, каждый год машину стоит подвергать техническому обслуживанию. На станции ТО могут осуществить замену масляного фильтра, относящегося к системе трансмиссии.

В профилактических целях следует прогревать коробку перед началом поездки. Особенно это необходимо в зимнее время.

Таким образом, современные машины оснащаются бортовым компьютером, который способствует повышению уровня комфортности во время поездки. Адаптивный автомат – это не в прямом смысле КПП, а тип управления переключением. Он может самостоятельно запомнить режим, обеспечивает эффективное управление сменой скоростей. Следует отметить присутствие гидротрансформатора. Для данного типа адаптивной коробки опасны большие нагрузки, резкая смена скоростных режимов. Благодаря электронике осуществляется контроль степень износа элементов автоматической коробки.

Особенности выполнения процедуры

Стоит понимать, что адаптация коробки после устранения неполадок или на новом авто – это комплексное мероприятие, которое влечёт определённые технические операции, выполняемые последовательно. Делается процедура для обычного (штатного) и спортивного режима. В первом случае можно обойтись без помощи специалиста. Выполняют настройку при заглушённом моторе, но при включённом зажигании. АКПП требуется выставить парковочное положение, во время корректировки также следует одновременно удерживать педаль газа и тормоза на протяжении 20 секунд. Через 1 секунду процедуру повторить, а после этого включить зажигание.

В спортивном режиме адаптация проводится примерно по такому же принципу. Отличие заключается в том, что, отпустив педали газа и тормоза, требуется заново нажать на обе без интервала ожидания в 1 секунду, то есть, сразу.

Чем отличается обычный и адаптивный автоматы

А вы знаете, что у адаптивных коробок и обычных есть существенные различия? Читайте об это ниже.

Обычная АКПП не имеет никаких пониженных передач. Производитель закладывает в нее 2500 оборотов, на которых она должна переключиться на новый скоростной режим и раньше или позже достижения этого числа она не сделает переход.

На обычных коробках автомат водитель сможет найти кнопки имитаций повышенной передачи (Overdrive), спортивного режима (Sport). На адаптивных нет ничего такого. Переход с одного режима на другой исполняется по команде от компьютера, а не человека.

Какая разница между коллекторным и бесколлекторным двигателем, их преимущества и недостатки

Большое количество людей увлекаются созданием электромоделей, где одним из основных элементов выступает электродвигатель. При этом сборка и эксплуатация таких устройств часто вызывает споры относительно того, какие именно моторы лучше использовать.

Ведь на выбор предлагаются коллекторные и бесколлекторные двигатели, у каждого из которых есть свои поклонники и противники. Чтобы попытаться определить лучший вариант, нужно изучить особенности, принцип работы, их сильные и слабые стороны. Это во многом поможет принять окончательное решение.

Электромоторчики входят в состав разного автомобильного оборудования, включая стеклоомыватели, стеклоподъёмники, вентиляторы охлаждения и отопления, дворники и пр. Но также широко применяются в других сферах и отраслях.

Двигатель коллекторного типа

Под понятие коллекторных двигателей попадают различные электромашины, где переключатель тока и роторный датчик по сути являются одним устройством. С его помощью обеспечивается качественное соединение цепей в неподвижном отсеке двигателя с рабочим ротором.

Внешний вид коллекторного двигателя

Конструкция включает в себя мощные щётки и непосредственно сам коллектор. Интересно и то, что коллекторный тип мотора обладает преимуществом в виде простоты ухода и эксплуатации, легко ремонтируется и долго служит. Но есть и недостаток, проявляющийся в малом весе при большом КПД. Изначально это может показаться преимуществом. Быстроходность вместе с малым весом вынуждают использовать дополнительно хороший редуктор, иначе нормально эксплуатировать моторчик не получится.

Если же машины подстроить под меньшие значения скорости, то моментально упадёт коэффициент полезного действия. Это, в свою очередь, негативно отразится на эффективности охлаждения.

Многих интересует, что же значит коллекторный двигатель. Фактически это электромашина переменного тока, способная с лёгкостью преобразовывать постоянный ток в механическую полезную энергию. При этом минимум одна обмотка соединяется с основным коллектором.

В зависимости от комплектации и входящих в состав моторчика компонентов, коллекторные двигатели (КД) могут применяться в игрушках, радиоуправляемых моделях и в автомобильных, выступая в качестве составляющего элемента системы охлаждения, вентиляции, стеклоочистителей, насосов омывателя ветрового стекла и пр.

Ведущим производителям удалось создать универсальные моторы коллекторного типа, которые способны функционировать на всех видах тока, то есть на переменном и постоянном. Они нашли широкое применение при создании электрических инструментов, бытовой техники, на ЖД транспорте. Их преимущество в небольшом весе и компактных размерах при достаточно адекватной цене.

Независимо от того, какая полярность у двигателя, этот электромотор будет всегда осуществлять вращения только в одном направлении, то есть в одну неизменную сторону. Это объясняется последовательным соединением роторным и статорных обмоток, что провоцирует одновременную смену полюсов. Потому момент всегда направлен в одну и ту же сторону.

Базовыми составляющими компонентами КД являются:

  • Двухполюсный статор, имеющий в своей основе постоянные магниты. В конструкции используются изогнутые магниты соответствующей формы;
  • Ротор трёхполюсного типа. Здесь также применяются специфические подшипники, обладающие эффектом скольжения;
  • Пластины из меди. Они применяются в роли щёток для двигателя коллекторного типа.

Набор действительно минимальный, потому встречается в основном в наиболее бюджетных и простых версиях коллекторных электромоторов. В их числе моторчики детских игрушек, которые не нуждаются в повышенной мощности.

Если вы хотите получить более качественный КД, тогда в его состав добавляют:

  • многополюсные роторы с подшипниками качения;
  • графитовые щётки;
  • четырёхполюсный статор на основе постоянных магнитов.

Чтобы добиться высокой эффективности, в состав КД включили несколько основных компонентов. А именно:

  • Коллектор. Фактически основообразующий элемент двигателя, вступающий в контакт с рабочими щётками. В итоге эти два компонента начинают распределять электроток по катушкам якорной обмотки;
  • Статор. Выступает в качестве неподвижной составляющей двигателя;
  • Якорь. Обязательный элемент коллекторных электромоторов. Внутри него индуцирует электродвижущая сила и проходит ток. Важно добавить, что якорем может выступать ротор и статор;
  • Индуктор. Особая система возбуждения, входящая в состав электромотора коллекторного типа. Служит для создания магнитного потока для того, чтобы вовремя создавать крутящий момент. На индукторе обязательно присутствует возбуждающая обмотка или постоянные машины;
  • Щёточки. Щётки входят в состав цепи, по которой следует электрическая энергия от поставщика к якорю. Щётки изготавливаются из высокопрочного графита. В зависимости от конкретного КД, моторчик оснащается 1 парой щёточек и более.
Читайте также:  УАЗ Хантер - технические характеристики: размеры, расход потлива, клиренс

Вне зависимости от компоновки и входящих в состав элементов на основе тех или иных материалов, принцип работы у всех коллекторных типов двигателей остаётся одинаковым.

Принцип работы

Вам будет не сложно представить 2 магнита, у которых есть разные плюса. Попробуйте приставить их друг к другу одноимённым полюсом и посмотрите, что из этого получится. Вам не удастся соединить их, как бы ни старались. Но стоит соединить магниты разными полюсами, как создастся высокопрочное соединение. Именно этот эффект входит в основу работы и устройства коллекторных двигателей.

Схема электродвигателя коллекторного типа

Вы узнали про устройство КД. Теперь в процессе эксплуатации наверняка захочется узнать, как можно самостоятельно проверить коллекторный двигатель. Для этого следует разобраться в принципе его работы. Функционирует электромотор такого типа следующим образом:

  • электрический ток поступает на якорные обмотки;
  • в зависимости от того, сколько обмоток используется на моторе, ток поочерёдно поступает на каждую из них;
  • тем самым создаётся электромагнитное поле;
  • с одной стороны южный полюс, а с другой — северный;
  • магнитное поле, появляющееся в обмотках, вступает во взаимодействие с полюсами магнитов статора моторчика;
  • это позволяет привести в движение, то есть заставить вращаться якорь;
  • ток, проходя через коллектор и щёточки, приходит на следующую обмотку;
  • так происходит последовательно, в зависимости от числа якорных обмоток;
  • переходя с обмотки на обмотку, вал мотора вместе с якорем начинают вращаться;
  • вращение происходит до тех пор, пока есть источник напряжения.

В стандартных моторах коллекторного типа предусматривается использование трёхполюсного якоря. То есть он имеет 3 обмотки. Это позволяет двигателю не залипать в одном из положений.

Преимущества и недостатки

Нельзя отрицать тот факт, что коллекторные движки или же коллекторные электрические двигатели активно применяются в различных сферах и отраслях. В том числе они часто используются в автомобильном производстве.

Но для объективности нужно добавить, что КД используется не всегда и не везде, поскольку в конкретных ситуациях более эффективным и рациональным решением станет бесколлекторный электромотор.

Большой опыт в использовании КД позволяет выделить ряд сильных и слабых качеств эксплуатации такого типа электродвигателя.

Внутреннее строение коллекторного асинхронного двигателя

К основным достоинствам можно отнести следующие моменты:

  • Сравнительно небольшой показатель параметров пускового тока. Это заметно проявляется в ситуациях, когда коллекторные моторы устанавливаются в различную бытовую технику;
  • Такие электромоторы можно подключать напрямую к энергоносителю, то есть к сети. При этом исключается необходимость в использовании разного рода дополнительных и вспомогательных приспособлений;
  • Высокие показатели быстроходности;
  • Независимости от параметров сетевой частоты;
  • При наличии схемы управления устройство становится проще.

Но не стоит делать поспешные выводы. Сначала нужно взглянуть на имеющиеся минусы коллекторного двигателя. А именно:

  • Общие показатели коэффициента полезного действия снижены. Это обусловлено наличием индуктивности, а также потерь, необходимых для перемагничивания статора;
  • Максимальные показатели крутящего момента далеки от совершенства;
  • Сравнительно низкий уровень надёжности;
  • Относительно небольшой срок службы.

Специалисты выделяют один ключевой недостаток, характеризующий коллекторные типы электромоторов. Никто не спорит, что в коллекторниках очень удобно регулировать обороты. Но если они высокие, сразу же проявляют себя щётки. Причём не с самой лучшей стороны. Щётки всё время находятся в состоянии плотного прилегания к самому коллектору электромотора. При высокой скорости работы начинает их быстрый износ. С течением времени происходит засорение, результатом чего становится появление искр.

Постепенный износ щёток двигателя и всего узла коллектора с щётками способствует снижению общих показателей эффективности работы КД. То есть коллекторно-щёточный узел смело можно считать главным недостатком конструкции. Потому производители всё чаще отказываются от коллекторников, выбирая вместо них бесщёточные аналоги.

Главным конкурентом коллекторного типа электродвигателя выступает бесколлекторный аналог. Он имеет отличный от КД принцип работы, а также характеризуется своими сильными и слабыми сторонами.

Бесколлекторный мотор

Теперь можно поговорить о том, чем же коллекторный двигатель в действительности отличается от рассматриваемого бесколлекторного аналога.

Внешний вид двигателя бесколлекторного типа

Очевидная разница просматривается при изучении принципа работы бесколлекторного двигателя (БКД). Хотя часто бесколлекторный и коллекторный двигатель сопоставляют друг с другом, воспринимая их как конкурентов, по сути это два разных мотора. Потому и отличия между ними обязательно присутствуют.

Фактически БКД работает наоборот.

  • В конструкции не предусмотрено наличие щёток и самого коллектора, что становится очевидным уже исходя из самого названия;
  • Если говорить о магнитах, то в случае с бесколлекторником они размещаются обязательно вокруг вала. При этом магниты выполняют роль или функции ротора;
  • Обмотки с несколькими магнитными полюсами располагаются вокруг установленного ротора;
  • На роторе присутствует датчик. Он же сенсор. Его задача заключается в контроле положения ротора и передаче полученной информации на процессор;
  • Этот процессор работает параллельно с регулятором скорости, который отвечает за скорости вращения. Суммарно за 1 секунду обмен информацией происходит около 100 раз минимум.

Подобное устройство и принцип работы позволяет получить более плавный режим работы двигателя при его максимальной отдаче.

В случае с бесколлекторными электродвигателями они могут оснащаться датчиками или сенсорами, а также эксплуатироваться без них. Если датчика нет, это в определённой, но незначительной степени снизит эффективность работы всего электродвигателя.

Распознать БКД с сенсором и без него достаточно просто. Если у обычного двигателя присутствует 3 провода питания, то в моделях с датчиком дополнительно имеется шлейф, состоящий из тонких проводов. Он идёт от самого моторчика к регулятору скорости.

Преимущества и недостатки

Главный и неоспоримый плюс бесщёточных электромоторов заключается в практически полном отсутствии деталей, способных изнашиваться. Говорить о полном их отсутствии нельзя, поскольку роторный вал устанавливается на подшипники. Именно они всё же могут с течением времени износиться. Хотя даже у подшипников ресурс огромный. Плюс всегда можно быстро и без особого труда заменить подшипник в случае его износа.

Бесколлекторный бесщеточный электродвигатель в разборке

Такие особенности конструкции породили преимущества в виде надёжности, высокой эффективности и длительного срока службы. За счёт наличия датчика положения ротора улучшается его производительность и точность в процессе работы.

Вспомните недостаток коллекторных аналогов, где щётки искрятся и быстро изнашиваются, параллельно провоцируя помехи в процессе работы узла, механизма или машины, в которой установлен КД. В случае с бесколлекторными или бесщёточными моторами от такой проблемы удалось избавиться. Никаких искрений здесь не наблюдается.

Бесколлекторники не трутся, не перегреваются, что также справедливо относится к весомым достоинствам механизма. Дополнительное обслуживание в процессе даже очень активной эксплуатации тут не требуется.

Если же говорить про недостатки, то из существенного и всё равно условного можно выделить только один минус. Это более высокая стоимость. Минус условный по причине того, что при своей цене исключается необходимость в замене пружин, якоря, коллектора или щёток. Потому стоимость целиком и полностью себя оправдывает.

Далее уже можно сделать собственные субъективные выводы, отталкиваясь от приведённой выше информации.

Сравнение коллекторного и бесколлекторного двигателя

Наша жизнь немыслима без всевозможных механизмов. Это детские игрушки, бытовая техника сложная электроника, промышленное оборудование и т.п. Во всех этих приборах и устройствах применяются электродвигатели, работающие от различных источников питания. В этой статье мы решили рассмотреть, чем отличаются коллекторные и бесколлекторные двигатели, а также какой тип двигателей лучше и почему.

  • Коллекторные двигатели
  • Бесколлекторные двигатели
  • Плюсы и минусы сравниваемых двигателей
  • Заключение

Коллекторные двигатели

Электродвигатели, используемые в детских игрушках, имеют небольшие габариты и малую мощность. Конструктивно коллекторный двигатель представляет собой два постоянных магнита, установленных на статоре, и ротор (якорь) с обмотками. Отметим, что на статоре могут быть и обмотки возбуждения, вместо постоянных магнитов.

К обмоткам подводится постоянное напряжение через ламели коллектора. Для подачи напряжения используются графитовые щетки. В двигателях малой мощности в качестве щеток применяются медные пластины.

Питаются коллекторные двигатели как от постоянного тока, так и от переменного. Для подключения питания они имеют два провода.

Бесколлекторные двигатели

Название электродвигателя говорит об отсутствии токосъемного устройства. Что является основной конструктивной разницей. Это позволяет снизить потери на трение и повысить мощность. При этом постоянные магниты смонтированы на роторе, а обмотки размещены на статоре.

Выпускаются бесколлекторные двигатели, у которых магниты смонтированы на корпусе. В этом случае корпус выполняет функцию ротора.

Читайте также:  На что влияет ширина шин автомобиля

Для пуска двигателя требуется специальное устройство (контроллер или коммутатор), что увеличивает стоимость бесколлекторных электродвигателей.

Плюсы и минусы сравниваемых двигателей

Электродвигатели с коллектором применяются в детских игрушках, моделях автомобиля, судомоделировании и т.п. Более мощные устройства с обмоткой возбуждения применяются в автомобилестроении, бытовой технике, в токарном станке или сверлильном и т.д.

Широкое применение обусловлено:

  • Невысокой ценой.
  • Простотой управления. Для регулировки скорости достаточно иметь реостат, а для осуществления реверса – изменить полярность в цепи возбуждения или якоря.
  • Можно подключать непосредственно к питающей сети.
  • Скорости вращения ротора можно менять в широком диапазоне.
  • Небольшие пусковые токи.

Но при простоте устройства коллекторные двигатели имеют недостатки:

  • Невысокий КПД.
  • Ограниченный срок службы.
  • Необходимость в постоянном обслуживании.
  • Невысокая надежность устройства.

При этом такие двигатели применяются не во всех отраслях промышленности. Их нельзя использовать во взрывоопасных помещениях. При эксплуатации на высоких скоростях быстро выходит из строя коллектор и щетки.

В результате происходит снижение мощности, а токоподводящие щетки начинают искрить. Такое конструктивное отличие приводит к быстрому выходу из строя ламелей коллектора, создаются помехи в радиоаппаратуре.

Щетки приходится менять, а коллектор протачивать, что сокращает срок службы двигателя. Это является основным недостатком таких устройств.

В бесколлекторных электродвигателях отсутствует коллектор. В этом состоит отличие бесеколлекторных двигателей от коллекторных, в связи с чем и отсутствуют указанные выше недостатки.

Достоинствами таких электрических машин являются:

  • Отсутствие трущихся частей позволяет сократить потери мощности на трение. Не требуется постоянно следить за состоянием щеток, так как они отсутствуют. Это отличие позволяет увеличить межремонтный период.
  • Возможность использования корпуса в качестве рабочего органа. Эта конструктивная разница позволяет применять механизмы непосредственно в качестве колес.
  • Бесколлекторные электродвигатели, в отличие от коллекторных более долговечны. При этом они менее подвержены перегреву, т.к. отсутствует коллектор и щетки, которые в процессе работы сильно нагреваются.
  • Мгновенно набирают обороты.
  • Могут применяться во всех отраслях промышленности, в пожаро- и взрывоопасных помещениях. Из-за отсутствия коллектора не возникает искрения, чем они и лучше.

Но у данного типа двигателя имеется существенный недостаток: бесколлекторные модели можно использовать только с драйвером-коммутатором. С помощью этого устройства задаются режимы работы, скорость и направление вращения. При этом стоимость бесколлекторных двигателей значительно выше. Разница в стоимости может быть значительной. Это то, чем отличаются они от устройств с коллектором.

Малый вес и высокая мощность — это то, что лучше сочетается в приборах с дистанционным управлением, например, для квадрокоптера, где от веса и КПД зависит дальность и время полёта.

Заключение

Итак, подведем итоги и обозначим в чем разница между коллекторным и бесколлекторным двигателем, перечислив их особенности.

  1. Есть щетки и коллектор, которые искрят и изнашиваются.
  2. Нужно чаще обслуживать, соответственно и срок службы не слишком долгий.
  3. Легко регулировать скорость лишь изменением напряжения.
  4. Для реверса нужно просто сменить полярность.
  5. Два предыдущих факта позволяют их использовать в бюджетных устройствах без сложных электросхем.
  1. Для запуска нужен контроллер, который хоть и не слишком дорого стоит, но увеличивает конечную стоимость, схемотехнику и вес изделия.
  2. Весят меньше чем коллекторные, при одинаковой мощности (но это частично компенсируется предыдущим фактом).
  3. Нет щеток и коллектора, поэтому не требуют обслуживания, не искрят.
  4. Больший срок службы, он ограничен лишь ресурсом подшипников ротора.
  5. Стоят обычно дороже чем коллекторные.
  6. Зачастую выдают больший момент на валу и обороты.
  7. При наличии датчиков положения вала обеспечивают большую стабильность оборотов при изменении нагрузки (жесткая механическая характеристика). Это особенно важно при использовании на станках и ручном инструменте.

Добавлю то, что нельзя однозначно сказать какой лучше или какой мощнее, можно найти коллекторный двигатель размером с холодильник, а можно бесколлекторный размером с ноготь. При этом оба будут отлично выполнять те функции, на которые рассчитаны и использоваться в конкретных устройствах с учетом требований к их надежности и особенностям эксплуатации. Каждый вид электропривода хорош по своему и идеален по конструкции как таковой.

Теперь вы знаете, в чем разница между коллекторным и бесколлекоторным двигателем, а также какие плюсы и минусы у каждого варианта исполнения. Надеемся, предоставленная информация была для вас полезной и интересной!

Выбор между коллекторными и бесщеточными BLDC-серводвигателями

Коллекторный и бесколлекторный двигатель

Чем отличаются коллекторные двигатели от бесколлекторных, главные преимущества и недостатки обоих типов.

В инженерном деле не существует идеальных решений, возможно, найти только оптимальное решение для конкретной прикладной задачи. Возможные технические решения для управления движением широко варьируются в зависимости от задач – от устройств для исследования космоса, где стоимость является несущественной и требуется абсолютная надежность работы, до скоростных упаковочных линий, которые работают в круглосуточном режиме без выходных. К счастью, команды разработчиков имеют множество вариантов для выбора. Одно из ключевых решений, которое нужно принять – использовать коллекторный или бесщеточный электродвигатель постоянного тока. Для этого нужно понять чем отличаются коллекторные двигатели от бесколлекторного аналога.

Щеточные электродвигатели постоянного тока

Прежде чем перейти к рассмотрению за и против, давайте рассмотрим конструкцию электродвигателя. Электродвигатель состоит из ротора (также называемого якорем) и статора. Хотя также существуют некоторые вариации, когда двигатели со стационарным ротором и вращающимся статором, для целей этой статьи давайте ограничимся обсуждением двигателя со стационарным статором, окружающим центральный вращающийся ротор. Статор состоит из пары постоянных магнитов с противоположным расположением полюсов, а ротор – из перекладины, обмотанной проволокой в противоположных направлениях с каждой стороны (см. Рис. 1). Когда обе катушки подключены к источнику питания, они действуют как электромагниты с противоположными полярностями.

Электродвигатели работают за счет сил Лоренца, которые возникают при прохождении электрического тока через обмотки, расположенные в магнитном поле. Воздействие этих сил заставляет ротор поворачиваться вокруг своей оси. Крутящий момент, создаваемый силой Лоренца, является векторным произведением, что означает, что когда полюса электромагнитов, образованных обмотками ротора, выровнены с противоположными полюсами магнитов статора, сила падает до нуля, а ротор прекращает вращение.

Однако изменение направления тока в обмотках приведет к изменению полярности электромагнитов. Сила будет восстановлена и ротор возобновит движение. Если это изменение будет происходить каждый раз, при прохождении вертикали статора, ротор будет продолжать вращаться и выполнять полезную работу.
Для изменения направления тока с контролируемой частотой, щеточным двигателям постоянного тока требуют коллектор. Коллектор – это разделенное на сегменты кольцо соответствующим образом подключенное к каждой из обмоток ротора. Когда ротор вращается – тоже происходит и с коллектором. Для того чтобы подвести ток к коллектору к нему с противоположных сторон прижимается пара неподвижных щеток (см. Рис. 2). Когда коллектор/ротор поворачивается, каждый сегмент коллектора последовательно контактирует сначала с одной щеткой/источником тока, а затем с другой. В результате ток в роторных катушках меняется каждый раз при повороте ротора на 180°, поддерживая вращение двигателя.

Это очень простая модель, представленная для примера. Как поясняется в учебном пособии, из практических соображений – щеточные двигатели постоянного тока обычно имеют три или более фаз.
Щетки могут быть изготовлены из различных материалов: сплавы на основе углерода, такие как графит-медь или графит-серебро, драгоценные металлы – золото, серебро или платина. Выбор подходящего материала щеток – зависит от конкретной прикладной задачи.

Графитовые щетки изготавливают из цельных кусков графита. Щетки из графита являются самосмазывающимися и достаточно прочными. Они подходят для больших двигателей, работающих на высокой скорости (выше 1000 об/мин). Недостатком графитовых щеток является то, что они со временем образовывают мусор, который может загрязнить коллектор и привести к сбоям в работе двигателя. Очень важно, чтобы такие щетки использовались при достаточно высоких скоростях для очистки от загрязнений.
Щетки из драгоценных металлов состоят из отдельных нитей, что делает их более хрупкими, чем щетки на основе графита. В тоже время щетки из драгоценных металлов обеспечивают лучшую производительность при более низком электрическом шуме и звуковом загрязнении. Они более компактны и эффективны в приложениях с низким рабочим циклом. Они также хорошо подходят для низковольтных систем, потому что падение напряжения между коллектором и щеткой имеет тенденцию быть низким. С другой стороны, они не обладают эффектом самосмазывания, что приводит к большему износу и необходимости использования внешних смазочных материалов.

Бесщеточные или коллекторные двигатели – За и против

Чтобы в полной мере понять чем отличается коллекторный двигатель от бесколлекторного, стоит взвесить все преимущества и недостатки обоих типов. Щеточные электродвигатели постоянного тока являются лучшим решением в области управления движением. Они экономичны и просты в использовании. Поскольку им не требуется встроенная электроника, они могут выдерживать экстремальные условия. При условии, что щетки выбраны правильно и своевременно обслуживаются, щеточные двигатели постоянного тока могут служить длительное время. Они хорошо подходят для применения в устройствах с умеренными и низкими скоростями.

Читайте также:  Налог на добавленный доход

Щеточные двигатели требуют квалифицированной эксплуатации. Прохождение определенной плотности тока, к примеру, приводит к выгоранию щеток. При избыточной скорости щетки могут слетать с коллектора. Для применения щеточных двигателей на высоте может потребоваться специальное обслуживание – как-то применение таких присадок, как дисульфид молибдена или карбонат лития.

Необходимость в коллекторе и щетках увеличивает размер двигателя. Щетки требуют регулярного обслуживания, поэтому двигатели должны находиться в доступном месте. Поскольку ротор с обмотками находится внутри (статора), щеточные двигатели могут рассеивать тепло только через воздушный зазор, что усложняет задачу теплообмена. Падение напряжения на щетках снижает эффективность щеточных двигателей.

Наконец, трение щеток о контакты коллектора дополнительно снижает эффективность и создает слышимый шум. Трение приводит к уменьшению крутящего момента на высоких скоростях. Кроме выше приведенных недостатков трение щеток о коллектор также может вызвать появление дуги и увеличение электромагнитных помех (EMI); а в худшем случае, могут генерироваться искры, что делает щеточные электродвигатели постоянного тока непригодными для использования во взрывоопасных средах.

Бесколлекторные двигатели постоянного тока (Вентильные двигатели)

Альтернативой являются бесколлекторные двигатели постоянного тока (BLDC) (Вентильные двигатели (ВД)) или двигатели с электронным коммутатором (ECM). Двигатели BLDC представляют собой синхронные двигатели с постоянными магнитами. Они могут работать как серводвигатели, а также как шаговые двигатели. Это определение также включает двигатели с переключением сопротивлением. С целью сравнения рассмотрим конструкцию двигателя BLDC, которая представляет собой коллекторный двигатель постоянного тока, вывернутый наизнанку. Постоянные магниты установлены на роторе, а статор состоит из ламинированной рамы с катушками. В результате ротор не нуждается в какой-либо проводке, и двигатель не нуждается в коллекторе и щетках.

Хотя двигатели BLDC классифицируются как двигатели постоянного тока и запитываются от источника постоянного тока, они имеют много общего с двигателями переменного тока. Чтобы поддерживать поворот ротора, обмотки статора должны запитываться последовательно; принципиально, это выглядит как импульсный источник тока, как правило, с синусоидальной формой сигнала, когда используется для сервомоторного управления. Для согласования распределения магнитного поля, генерируемое обмотками статора, с распределением магнитного поля ротора, в BLDC двигателях контролируеться угловое положение ротора, как правило, при помощи датчиков Холла. Эта обратная связь используется для управления переключением тока на обмотках.

Поскольку в двигателях BLDC не применяются щетки и коллекторы, они более компактны, чем коллекторные двигатели. Они обеспечивают более высокую производительность в одном типоразмере. Отсутствие щеток снижает необходимость обслуживания и позволяет ротору вращаться на более высоких скоростях. Отсутствие трения выравнивает кривую скорость/крутящий момент, устраняет вероятность искрения и снижает электромагнитное помехи (EMI). Перемещение теплогенерирующих обмоток наружу упрощает теплоотвод. Этот подход также снижает инерционность ротора, позволяя сервомоторам BLDC обеспечивать лучший динамический отклик. Отсутствие падения напряжения на щетках также повышает эффективность BLDC двигателей.

С другой стороны, двигатели BLDC сложнее, чем их коллекторные аналоги. Использование встроенной электроники значительно увеличивает их стоимость.

Как обсуждалось в начале этой статьи, выбор типа двигателя обуславливается требованиями, которые к нему выставляются. Проект с ограниченным бюджетом и с умеренными требованиями к характеристикам двигателя может отлично быть реализован с использованием коллекторного двигателя постоянного тока. Если для проекта более важными являются производительность и рабочий цикл BLDC двигатель может быть лучшим решением. Оригинальный производитель оборудования и конечные пользователи должны учитывать не только возможности двигателя, но и возможности своего персонала по инсталляции и обслуживанию оборудование. Эффективное техническое решение может быть принято только при обоснованном выборе оборудования.

В чем разница между коллекторными и бесколлекторными моторами?

Вступление

Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?

Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Минусы коллекторных моторов

Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.

Принцип работы бесколлекторного мотора

Здесь все наоборот, у моторов бесколлекторного типа отсутствуют как щетки так и коллектор. Магниты в них располагаются строго вокруг вала и выполняют функцию ротора. Обмотки, которые имеют уже несколько магнитных полюсов, размещаются вокруг него. На роторе бесколлектоных моторов устанавливается так называемый сенсор (датчик) который будет контролировать его положение и передавать эту информацию процессору который работает в купе с регулятором скорости вращения (обмен данными о положении ротора происходит более 100 раз в секунду). На выходе мы получаем более плавную работу самого мотора с максимальной отдачей.

Бесколлекторные моторы могут быть с датчиком (сенсором) и без него. Отсутствие датчика незначительно снижает эффективность работы мотора, поэтому их отсутствие вряд ли расстроит новичка, но зато, приятно удивит ценник. Отличить друг от друга их просто. У моторов с датчиком, помимо 3-х толстых проводов питания есть еще дополнительный шлейф из тонких, которые идут к регулятору скорости. Не стоит гнаться за моторами с датчиком как новичку так и любителю, т.к их потенциал оценит только профи, а остальные просто переплатят, причем значительно.

Плюсы бесколлекторных моторов

Почти нет изнашиваемых деталей. Почему «почти», потому что вал ротора устанавливается на подшипники, которые в свою очередь имеют свойство изнашиваться, но ресурс у них крайне велик, да и взаимозаменяемость их очень проста. Такие моторы очень надежны и эффективны. Устанавливается датчик контроля положения ротора. На коллекторных моторах работа щеток всегда сопровождается искрением, что впоследствии вызывает помехи в работе радиоаппаратуры. Так вот у бесколлектоных, как вы уже поняли, эти проблемы исключены. Нет трения, нет перегрева, что так же является существенным преимуществом. По сравнению с коллекторными моторами не требуют дополнительного обслуживания в процессе эксплуатации.

Минусы бесколлекторных моторов

У таких моторов минус только один, это цена. Но если посмотреть на это с другой стороны, и учесть тот факт что эксплуатация бесколлекторных моторов освобождает владельца сразу от таких заморочек как замена пружин, якоря, щеток, коллекторов, то вы с легкостью отдадите предпочтение в пользу последних.

Коллекторный двигатель- принцип работы и отличия от бесколлекторного двигателя

В чем разница между коллекторными и бесколлекторными моторами? Какой из них лучше поставить на свою радиоуправляемую электромодель?

  1. Вступление
  2. Коллекторный двигатель
  3. Устройство коллекторного двигателя
  4. Бесколлекторный двигатель
  5. Особенности конструкции
  6. Коллекторный двигатель
  7. Принцип работы коллекторного мотора
  8. Минусы коллекторных моторов
  9. Какой тип двигателя выбрать?
  10. Впускные коллекторы с изменяемой геометрией
  11. Двигатели с переменной длиной впускного тракта
  12. Устройство коллекторов с изменением сечения каналов
  13. Впускные коллекторы с системой рециркуляции отработанных газов
  14. В чем еще отличие
  15. Бесколлекторные двигатели
  16. Теги
  17. Что называют коллекторным двигателем?
Читайте также:  3 случая, когда пересекать сплошную линию все-таки можно

Вступление

Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?

Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Вывод: Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым). Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей. Т.к. такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат в может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлекторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.
  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Вывод: Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Какой лучше? Выбор за Вами!

Больше на сайте: greenworkstools.ru

Особенности конструкции

Наличие трёхфазной обмотки у бесколлекторного двигателя означает что для управления им обязательно требуется электроника — контроллер, независимо от сложности решаемых задач. С его помощью можно формировать трёхфазную систему напряжений, необходимую для работы и делать это так чтобы двигатель вращался необходимым образом. Без контроллера реализовать управление современными бесколлекторным микродвигателем практически невозможно.

Для коллекторного ситуация иная – он может работать от обычного источника постоянного напряжения, без использования управляющей электроники. Хотя такой подход позволяет решать лишь самые простые задачи управления движением, он тоже возможен.

Обязательное использование контроллера для управления бесколлекторным мотором не всегда является однозначным их недостатком по сравнению с коллекторными, ведь контроллеры предоставляют ряд сервисных функций, как например измерение и ограничение тока или возможность устанавливать заданное значение скорости или положения в удобном виде. Если же речь идёт о задачах, связанных с точным регулированием скорости, или о задачах, связанных с позиционированием, то контроллер нужно будет использовать и для коллекторного, и для бесколлекторного мотора.

Коллекторный двигатель

Коллекторный двигатель – это двигатель, оснащенный щетками, или же щеточно-коллекторным узлом, который и отвечает за приведение в движение данного механизма. Иными словами, коллектор – это совокупность нескольких контактов. Коллекторный двигатель достаточно прост в управлении, а источником питания для него может быть как батарея, так и аккумулятор.

Преимущества коллекторного двигателя заключаются в следующих качествах:

  • он имеет сравнительно небольшой вес и компактный размер;
  • его стоимость значительно ниже стоимости бесколлекторного двигателя;
  • коллекторный двигатель пригоден к ремонту.

Но наряду с преимуществами, данный вид двигателя имеет и недостатки:

  • коэффициент полезного действия коллекторного двигателя не превышает 50-60%;
  • слишком быстрый износ двигателя за счет высокой скорости трения его щеток.

Скорость работы коллекторного двигателя одновременно является и преимуществом данного типа механизма, и его недостатком. С одной стороны, она позволяет проводить работу на высоких оборотах, но с другой – становится причиной перегрева мотора и дальнейшего выхода его из строя.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Минусы коллекторных моторов

Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.

Читайте также:  Как получить водительское удостоверение на квадроцикл?

Какой тип двигателя выбрать?

Каждый тип двигателя имеет право на существование. Ведь для работы одного типа станка или прибора подойдет только коллекторный двигатель, а для работы другого – бесколлекторный. Вдобавок, не последнее место в выборе типа двигателя играет и мнение самого покупателя. Ведь механизм должен отвечать требованиям не только прибора, для которого он приобретается, но и требованиям его будущего владельца.

Впускные коллекторы с изменяемой геометрией

Отдельного внимания заслуживает система изменения геометрии впускного коллектора.

Двигатели с переменной длиной впускного тракта

Импульсные движения во впускном коллекторе, безусловно, помогают его работе, но процесс запускается только в диапазоне определенных частот колебаний. Длина импульса пропорциональна длине трубы коллектора. Такой принцип используется во впускных коллекторах с изменяемой длиной. Электронный блок управления двигателем контролирует число оборотов и подает сигнал на клапан для включения «малого» либо «большого» круга подачи смеси.

Устройство коллекторов с изменением сечения каналов

В случае изменения сечения впускного коллектора по ходу движения топливной смеси установлены заслонки, которые в закрытом положении не перекрывают полностью продвижение смеси, а уменьшают просвет коллектора. Изменение сечения потока приводит к завихрениям и увеличению их скорости. Управление такими устройствами осуществляет бортовой компьютер.


Пример реализации коллектора с изменяемым сечением дизельного и бензинового двигателей

Впускные коллекторы с системой рециркуляции отработанных газов

Впускные коллекторы с системами EGR Exhaust Gas Recirculatiоn (система рециркуляции отработанных газов) предназначены для уменьшения токсичных выбросов в атмосферу. Подобные конструкции коллекторов устанавливаются как на бензиновые, так и на дизельные двигатели. Принцип действия прост — отработанные газы из выхлопной системы через отдельный клапан попадают обратно во впускной коллектор, благодаря чему понижается содержание кислорода в топливовоздушной смеси, а значит, понижается интенсивность окисления и температура в камерах сгорания. Система включается только в определенных режимах, например, на холостом ходу.

В чем еще отличие

Если попытаться сравнить параметры двигателей, то прежде всего нужно сказать о скорости вращения. Номинальная скорость коллекторного как правило не превышает 10-20 тысяч оборотов в минуту для двигателей самых маленьких из доступных размеров и не более 3- 5 тысяч оборотов в минуту для более крупных. Скорости, на которые рассчитаны бесколлекторные двигатели лежат в более широком диапазоне – выпускаются как сверхскоростные модели на скорости выше 100 тысяч оборотов в минуту, так и тихоходные многополюсные двигатели с номинальными скоростями не более 1-2 тысячи оборотов в минуту. Для коллекторных моторов ограничителем скорости выступает коллектор – линейная скорость перемещения щёток по коллектору ограничена.

Сравнивая номинальный момент, можно сказать, что он сильнее зависит от особенностей конструкции и компоновки двигателя, различающихся от серии к серии чем от того коллекторный это двигатель или бесколлекторный. Так, например распространены бесколлекторные двигатели большого диаметра и с очень короткой осевой длиной, рассчитанные на низкие скорости вращения и большой момент. И их различия по основным параметрам с бесколлекторными же двигателями цилиндрической компоновки (большая длина и маленький диаметр) не менее сильны чем между коллекторными и бесколлекторными двигателями одинаковой компоновки (например, цилиндрической).

Оба типа двигателей имеют свои характерные особенности, которые могут являться как преимуществами, так и недостатками в зависимости от требований того или иного приложения

Бесколлекторные двигатели

Название электродвигателя говорит об отсутствии токосъемного устройства. Что является основной конструктивной разницей. Это позволяет снизить потери на трение и повысить мощность. При этом постоянные магниты смонтированы на роторе, а обмотки размещены на статоре.

Выпускаются бесколлекторные двигатели, у которых магниты смонтированы на корпусе. В этом случае корпус выполняет функцию ротора.

Для пуска двигателя требуется специальное устройство (контроллер или коммутатор), что увеличивает стоимость бесколлекторных электродвигателей.

Бесколлекторный двигательДвигательДвигатель постоянного токаКоллекторный двигатель постоянного токаШаговый двигательЭлектродвигатель

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Что называют коллекторным двигателем?

Коллекторным двигателем называется электрическая машина, датчик положения ротора и переключатель тока в которой — это одно и то же устройство, называемое щеточно-коллекторным узлом. Про последний можно рассказать дополнительно. Он обеспечивает электрическое соединение цепей в неподвижной части машины с цепями ротора. Конструктивно он состоит из щеток (под ними понимаются скользящие контакты, которые расположены вокруг вращающейся части двигателя) и коллектора (то, что находится на движимом элементе механизма).

К общим достоинствам можно отнести то, что коллекторный двигатель прост в изготовлении и эксплуатации, имеет значительный ресурс использования и легко может быть отремонтирован. К общим недостаткам причисляют то, что они имеют малую массу и большой коэффициент полезного действия. В большинстве случаев это только плюс, но не сейчас. Так, соединение низкой массы и быстроходности (которая достигает сотен и тысяч оборотов в минуту) приводит к тому, что для нормальной работы почти всегда требуются редукторы. А при перестройке на низкую скорость машина имеет пониженный КПД, и возникают проблемы с охлаждением. Пока изящного решения этой проблемы найти не удалось.

Коллекторный или бесколлекторный двигатель радиоуправляемой модели, выбираем электродвигатель машины на р/у или квадрокоптера.

Внедрение робототехники даже в детские игрушки ставит разработчиков перед выбором – какой тип двигателя выбрать для своего приложения? Выбор довольно сложен, если учитывать специфику машин и приложений.

  1. Вступление
  2. Коллекторный двигатель
  3. Вы здесь
  4. Три основные топологии двигателя
  5. Принцип работы коллекторного мотора
  6. Бесколлекторные электродвигатели постоянного тока (BLDC)
  7. Бесколлекторные двигатели
  8. Плюсы и минусы бесщеточного шуруповерта
  9. Какой тип двигателя выбрать?
  10. Теги
  11. Что называют коллекторным двигателем?

Вступление

Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?

Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.

Коллекторный двигатель

Коллекторный двигатель – это двигатель, оснащенный щетками, или же щеточно-коллекторным узлом, который и отвечает за приведение в движение данного механизма. Иными словами, коллектор – это совокупность нескольких контактов. Коллекторный двигатель достаточно прост в управлении, а источником питания для него может быть как батарея, так и аккумулятор.

Преимущества коллекторного двигателя заключаются в следующих качествах:

  • он имеет сравнительно небольшой вес и компактный размер;
  • его стоимость значительно ниже стоимости бесколлекторного двигателя;
  • коллекторный двигатель пригоден к ремонту.

Но наряду с преимуществами, данный вид двигателя имеет и недостатки:

  • коэффициент полезного действия коллекторного двигателя не превышает 50-60%;
  • слишком быстрый износ двигателя за счет высокой скорости трения его щеток.

Скорость работы коллекторного двигателя одновременно является и преимуществом данного типа механизма, и его недостатком. С одной стороны, она позволяет проводить работу на высоких оборотах, но с другой – становится причиной перегрева мотора и дальнейшего выхода его из строя.

Вы здесь

Опубликовано: 28 августа 2014

Всем привет, сегодня мы расскажем о разнице между коллекторным и бесколлекторными двигателями.

Перед покупкой радиоуправляемой модели с электроприводом, необходимо определиться с выбором электродвигателя, которые бывают двух типов: коллекторные и бесколлекторные двигатели .

Основная разница для потребителя: коллекторные двигатели более дешевые, но модели с такими двигателями развивают меньшую скорость. Бесколлекторные двигатели – более дорогие, но способны развить большую скорость, а также более износостойкие. Далее немного подробнее:

Три основные топологии двигателя

Три часто используемые конфигурации маломощных DC-двигателей – коллекторные, бесколлекторные (BLDC) и шаговые. Каждый из них работает благодаря взаимодействию между токами в катушках (или обмотках) и постоянными магнитами (в большинстве конструкций), что приводит к притяжению/отталкиванию магнитного поля, вызывающему вращение. Все три вида двигателей имеют некоторые сходства, но отличаются методом управления переключением тока, протекающего через обмотки ротора и статора.

Читайте также:  Вариатор: что это такое в машине? Фото и картинки - плюсы и минусы - видео. Коробка передач CVT

Они также отличаются возможностью выполнения определенных задач, качеством этого выполнения и гибкостью управления.

  • Исторически первым был двигатель коллекторного типа. По мере вращения ротора контактные щетки, представляющие собой сплошные контакты, состоящие, как правило, из графита, касаются соответствующих областей на роторе (рисунок 1). По мере вращения ротора изменение точек контакта щетки вызывает изменение направления потока тока и, следовательно, магнитного поля. Затем взаимодействие магнитного поля между ротором и статором меняется на противоположное, что вынуждает ротор продолжать движение.

Рис. 1. Коллекторный двигатель постоянного тока

Данная механическая схема концептуально проста. Однако ее недостаток в том, что щетки изнашиваются и нуждаются в замене, реализация интеллектуального управления сложна, потому что переключить данный двигатель довольно трудно, к тому же, щетки создают электромагнитные помехи (EMI), также известные как радиочастотные помехи (RFI).

В простейшем варианте коллекторный двигатель не нуждается в электронном управлении – он просто работает в зависимости от токовой и механической нагрузок. В других вариантах силовая шина двигателя включается и выключается при помощи транзисторной схемы, что является простейшим вариантом управления. Также возможно использование микросхемы-драйвера для повышения производительности и обеспечения контроля над скоростью и вращательным моментом.

  • В двигателе BLDC механическая коммутация заменена электрической с использованием транзисторов. Чаще всего используются МОП-транзисторы (MOSFET), которые управляются драйвером затвора (в некоторых конструкциях используются биполярные транзисторы с изолированным затвором – IGBT). Отдельный контроллер управляет точным переключением катушки в момент, необходимый для поддержания вращения двигателя на желаемой скорости (рисунок 2).

Рис. 2. Бесколлекторный двигатель постоянного тока

Примечание: двигатели BLDC иногда называют электронно-коммутируемыми (EC) двигателями, что является более точным определением.

В BLDC магнитное поле ротора присутствует всегда, оно генерируется постоянными магнитами. Когда ток направляется от одной фазы двигателя к другой, магнитные поля объединяются, генерируя изменяющееся поле статора.

Управление двигателем производится не только при помощи электроники. Вместо этого переключение может быть сформировано в драйвере затвора с контролируемым временем нарастания и спада для уменьшения EMI/RFI. Основная проблема заключается в том, что более мягкое переключение приводит к потере мощности и снижению КПД двигателя, и в этой ситуации разработчику необходимо найти максимально компромиссное решение. Некоторые новые драйверы затвора используют множество сложных и тонких трюков, чтобы облегчить эту задачу.

  • Шаговый двигатель использует концепцию двигателя BLDC, включая в себя большое количество катушек (или полюсов), расположенных по периферии двигателя (рисунок 3). Путем поочередного включения и выключения этих полюсов индуцируется шаг и вращение ротора в прямом или обратном направлении.

Рис. 3. Шаговый двигатель

Полюсов может быть и 16, и 128 (или более), в зависимости от требуемой точности вращения, прямо пропорциональной их количеству. Шаговые двигатели доступны в однополярных двухфазных и биполярных двух-, трех- и пятифазных конфигурациях. Самый распространенный из них – биполярный двухфазный двигатель.

В шаговом двигателе магнитное поле ротора генерируется постоянным магнитом, а магнитное поле статора – током, протекающим в определенной фазе. В результате ротор будет выравниваться в соответствии с магнитным полем статора, чтобы достичь заданного положения.

Шаговый двигатель хорошо подходит для задач, где необходимы быстрые остановка/запуск, позиционирование или движение назад/вперед, однако он не подойдет для долговременной непрерывной работы. Он часто используется в принтерах и приборах с поэтапным позиционированием (это только два из его многочисленных применений). Несмотря на то, что точность позиционирования зависит от числа полюсов, использование усовершенствованного метода, в котором смежные полюсы включаются частично (так называемый «микрошаг»), позволяет более точно управлять переключением и позиционированием.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Бесколлекторные электродвигатели постоянного тока (BLDC)

В самом названии уже можно увидеть коренное различие между этими машинами. В BLDC машинах отсутствуют щетки, что делает их конструкцию заметно сложнее. Бесщеточная машина постоянного тока имеет четыре или более постоянных магнита в роторе.

Эффективность – основная фишка данных машин. Поскольку ротор имеет постоянные магниты, он не нуждается в источнике напряжения, следовательно, нет физического подключения. Нет подключения – нет щеточно-коллекторного узла, соответственно, исчезают все проблемы связанные с ним. Но есть и минус – такой тип электрических машин должен иметь электронную систему управления положением ротора в пространстве. Для анализа поворотов машины и выработки управляющих импульсов в нужный момент используют микроконтроллер, а для отслеживания поворота вала в пространстве – поворотные датчики или датчики на основе эффекта Холла.

Электродвигатели BLDC представляют собой синхронные машины, что означает, что магнитные поля ротора и статора вращаются с одинаковой частотой. Они могут иметь одно-, двух- и трехфазные конфигурации.

Бесколлекторные двигатели

Название электродвигателя говорит об отсутствии токосъемного устройства. Что является основной конструктивной разницей. Это позволяет снизить потери на трение и повысить мощность. При этом постоянные магниты смонтированы на роторе, а обмотки размещены на статоре.

Выпускаются бесколлекторные двигатели, у которых магниты смонтированы на корпусе. В этом случае корпус выполняет функцию ротора.

Для пуска двигателя требуется специальное устройство (контроллер или коммутатор), что увеличивает стоимость бесколлекторных электродвигателей.

Плюсы и минусы бесщеточного шуруповерта

Производители пишут, что основная изюминка бесщеточного шуруповерта — не нужно менять щетки, которых нет. Это на самом деле так, но так ли сложно поменять щетки?

За этим «жирным» плюсом притаился довольно коварный минус. Дело в том, что более-менее нагруженный шуруповерт потребует замены щеток на второй, а то и третий год работы. Проводя их замену, бережливый владелец наверняка заглянет и в другие узлы инструмента. Обратит внимание на состояние подшипников, очистит внутренности от пыли, заложит порцию свежей смазки — в общем, проведет полное техобслуживание инструмента. В случае с бесколлекторным инструментом, о необходимости сервисного обслуживания можно просто забыть и вспомнить о нем, когда шуруповерт начнет конкретно барахлить.

Вот по-настоящему значимые преимущества бесщеточного инструмента:

  • Высокий КПД. У бесщеточного двигателя он составляет порядка 90 %, в то время как у коллекторного мотора — на уровне 60 %. Это обусловлено отсутствием потерь на трение и искрообразование, и, как следствие, повышением температуры коллекторного узла якоря мотора.
  • Быстрый выход на номинальную скорость вращения двигателя. В этом опять же заслуга высокого КПД BLDC мотора.
  • При тех же массогабаритных показателях, с вала бесщеточного электродвигателя снимается большая мощность, а это влечет получение большего крутящего момента.
  • Лучшая энергоэффективность. Благодаря отсутствию потерь в коллекторе и щеточном узле и более высокому КПД бесщеточный шуруповерт сделает больше полезной работы на одном заряде аккумулятора. Это важно профессионалам, для которых время — деньги. Эффективность бесщеточного шуруповерта в среднем выше на 25–40 % в сравнении с его коллекторным аналогом.
  • Возможность использования во взрыво- и пожароопасных средах ввиду отсутствия искр на щеточном узле.
  • Грамотная защита от перегрузки. Плата управления электродвигателем просто не позволит нагрузить инструмент сверх меры, а вот коллекторный шуруповерт при должном старании можно перегреть и получить дымок из вентиляционных отверстий.

Но бесщеточным инструментам присущи и некоторые недостатки:

  • Высокая цена. Наличие в конструкции дорогой силовой платы управления BLDC мотором ощутимо увеличивает стоимость шуруповерта.
  • Плохая ремонтопригодность. В бесщеточном шуруповерте плата управления, кнопка включения инструмента и статор электродвигателя обычно идут единым блоком. Стоимость запчасти — от 2/3 до 3/4 стоимости нового инструмента. Если поломка произойдет по истечении гарантийного срока, то ремонтировать такой шуруповерт вряд ли целесообразно. В отличие от коллекторных экземпляров, где можно заменить кнопку или электродвигатель отдельно, и стоить это будет на порядок дешевле.
Читайте также:  Регулируем клапана в домашних условиях

Какой тип двигателя выбрать?

Каждый тип двигателя имеет право на существование. Ведь для работы одного типа станка или прибора подойдет только коллекторный двигатель, а для работы другого – бесколлекторный. Вдобавок, не последнее место в выборе типа двигателя играет и мнение самого покупателя. Ведь механизм должен отвечать требованиям не только прибора, для которого он приобретается, но и требованиям его будущего владельца.

Бесколлекторный двигательДвигательДвигатель постоянного токаКоллекторный двигатель постоянного токаШаговый двигательЭлектродвигатель

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Что называют коллекторным двигателем?

Коллекторным двигателем называется электрическая машина, датчик положения ротора и переключатель тока в которой — это одно и то же устройство, называемое щеточно-коллекторным узлом. Про последний можно рассказать дополнительно. Он обеспечивает электрическое соединение цепей в неподвижной части машины с цепями ротора. Конструктивно он состоит из щеток (под ними понимаются скользящие контакты, которые расположены вокруг вращающейся части двигателя) и коллектора (то, что находится на движимом элементе механизма).

К общим достоинствам можно отнести то, что коллекторный двигатель прост в изготовлении и эксплуатации, имеет значительный ресурс использования и легко может быть отремонтирован. К общим недостаткам причисляют то, что они имеют малую массу и большой коэффициент полезного действия. В большинстве случаев это только плюс, но не сейчас. Так, соединение низкой массы и быстроходности (которая достигает сотен и тысяч оборотов в минуту) приводит к тому, что для нормальной работы почти всегда требуются редукторы. А при перестройке на низкую скорость машина имеет пониженный КПД, и возникают проблемы с охлаждением. Пока изящного решения этой проблемы найти не удалось.

Электродвигатель для радиоуправляемой модели: какие бывают и что лучше купить – коллекторный или бесколлекторный

Вариантов выбора немного, но задуматься есть над чем

Если вы уже решили, какую именно радиоуправляемую модель хотите купить и точно знаете, что ваш будущий внедорожник, самолет, дрон или быстроходный катер будет оснащен электродвигателем, самое время задуматься, какого типа мотор лучше и надежнее.

Современная RC-модель на электрической тяге может иметь коллекторный или бесколлекторный двигатель. Каждый вариант имеет свои достоинства и недостатки. И разница тут не только в цене, как могут сказать в ближайшем магазине.

Итак, рассмотрим все детально, а выводы относительно того, с каким же моторчиком выбрать машинку (или другую модель) на радиоуправлении, пусть каждый делает самостоятельно.

Коллекторный электродвигатель: плюсы и минусы конструкции

«Brushed», «щеточный», «коллекторный» – все это названия первого типа электромоторов, которые пользуются популярностью как среди начинающих пилотов, так и среди профессиональных спортсменов, к примеру, участвующих в гонках или соревнованиях DRIFT.

Важная особенность конструкции – это наличие щеточно-коллекторного узла, являющегося его «сердцем» и непосредственно приводящим RC-технику в движение.

Внешнее отличие коллекторного от бесколлекторного электромотора – наличие всего двух проводов («плюс» и «минус») у коллекторных двигателей и трех проводов («фаз») у бесколлекторных двигателей для дальнейшего подключения мотора к регулятору оборотов (регулятору скорости, аббревиатура «ESC» англ.).

Ротор (подвижная часть) и статор (неподвижная часть) – это два основных элемента мотора коллекторного типа.

Внутри корпуса (статора) вращается подвижный ротор с медной обмоткой. С одной стороны вала ротора установлена передающая шестерня, или шкив, а с другой – коллектор, который, по сути, является набором контактов.

На статоре установлены графитовые щетки – тоже, своего рода, скользящие контакты, которые контактируют с коллектором. Щетки предназначены для передачи электроэнергии на обмотку вращающегося ротора.

С коллекторных двигателей все начиналось, это – «заря» RC-техники, поэтому они более дешевые и просты в обслуживании, но существенно уступают по мощности и времени эксплуатации новому поколению электромоторов.

Коллекторные двигатели

Преимущества

Низкий КПД (около 60%)

Сравнительно низкая скорость движения RC-модели

Простота эксплуатации и технического обслуживания

Быстрый износ составляющих конструкции, очень ограниченный ресурс эксплуатации

Исключительно подходит под определенные виды спортивных соревнований

Достоинства, приведенные в таблице, делают модели, оснащенные коллекторными двигателями, желанными для начинающих пилотов и пилотов-профессионалов для использования на специальных соревнованиях.

Если покупаете радиоуправляемую модель с коллекторным двигателем, учтите, что графитовые щетки и коллектор – это система подвижных контактов, в которой механическая составляющая мотора имеет свои особенности. Возможны искрения и перегрев, а потому – желательно избегать контакта с агрессивной внешней средой (влага, грязь, пыль).

Перед началом эксплуатации модели с коллекторным двигателем, ее желательно проверить, «обкатать» на низких скоростях, чтобы щетки «притерлись» к коллектору.

Бесколлекторный электродвигатель: в чем преимущества

«Brushless», «бесщёточный», «бесколлекторный» – это электромотор для радиоуправляемой модели (автомобиля, катера, самолета, вертолета или квадрокоптера), который был разработан уже в 21 веке. Он воплотил в себя все вожделенные качества любого профессионального RC-моделиста: надежность, мощность, долговечность.

Основная проблема, которой «грешит» любой электромотор – это перегрев. Когда ротор вращается внутри статора в коллекторном двигателе, высокая температура внутри механизма (а, следовательно, и быстрый износ, и частые поломки) – неизбежна.

Гениальное инженерное решение перевернуло мир радиоуправляемых моделей и не только: «А что, если вращать не ротор, а статор? Тогда охлаждение мотора будет происходить автоматически, за счет потоков воздуха создаваемого самим двигателем!»

Бесколлекторный двигатель стал широко использоваться в авиации и автомобиле- и судостроении, а радиоуправляемые модели с такой «начинкой» стали ездить и летать значительно быстрее и намного дольше.

Двигатель бесколлекторного типа приводится в движение за счет переменного тока. В этом случае нужен специальный регулятор скорости (или регулятор оборотов или контроллер), который преобразует постоянный ток аккумулятора в переменный с тремя фазами. Техническая сложность конструкции определяет главный (и, наверное, единственный) недостаток двигателей этого типа – они значительно дороже коллекторных.

Бесколлекторные двигатели

Преимущества

Высокий КПД двигателя (до 92%)

Более высокая мощность в сравнении с аналогичными по размеру коллекторными двигателями

Больший вес, по сравнению с аналогичным коллекторным двигателем

Высокая износостойкость за счет бесконтактной конструкции, соответственно значительно больший ресурс эксплуатации

Крайне нежелательно давать такие модели детям

Высокая степень влагозащиты, защиты от пыли и вязкой грязи

Невероятно высокая скорость движения модели, например, наземные модели могут развивать скорость до 260 км/ч, а воздушные до 350 км/ч.

Бесколлекторные электродвигатели надежные и долговечные, они практически не изнашиваются. Что может выйти из строя – это подшипники, которые легко заменить.

Одна особенность, которую может не заметить в бесколлекторном двигателе новичок, но чему обрадуется профи – это наличие сенсоров. Сенсорные электромоторы практичнее, поскольку установленные датчики (сенсоры) гарантирует очень плавную работу и быстрый старт, а также более рациональный расход энергии.

Есть сенсор или нет, начинающий моделист может не заметить, а вот, по стоимости ощутит сразу – наличие сенсоров делает ценник мотора более «тяжелым».

Как отличить внешне? У моторов с сенсорами кроме трех соединительных проводов есть шлейф из тонких проводков, которые подключаются к регулятору скорости.

Радиоуправляемая модель с бесколлекторным мотором – это выбор профессионалов, особую ценность для которых приобретает скорость и выносливость аппарата на соревнованиях.

Также следует отметить, что в большинстве случаев, для питания регуляторов с бесколлекторными двигателями применяются специальные аккумуляторные батареи литий-полимерного типа, которые могут вырабатывать огромные токи разряда (и это будет отдельная тема для следующей статьи).

Перед покупкой, взвесьте все «за» и «против», обратитесь за консультацией к специалистам и выбирайте модель «под себя» и свои возможности. Главное, что ассортимент рынка RC-моделей обширен и позволяет сделать оптимальный выбор.

В чем разница между коллекторными и бесколлекторными электродвигателями постоянного тока?

Рынок электродвигателей и систем электроприводов процветают в огромном количестве различных областей, в частности в медицинских и роботизированных приложениях. Кроме того, существует большой спрос на малые, эффективные, с большим и небольшим крутящим моментом, а также электродвигатели большой и малой мощности в автомобильном сегменте.

Для этих приложений могут выбирать электропривода из щеточных электродвигателей постоянного тока, бесщеточных электродвигателей постоянного тока (BLDC) или их комбинации. Большинство машин работают благодаря явлению электромагнитной индукции. Тем не менее, между этими машинами существуют ключевые различия, которые необходимо учитывать при выборе электрической машины.

Коллекторные электродвигатели постоянного тока

С конца 1800-х годов машины постоянного тока являются одними из простейших электродвигателей. Они получают питание от источника постоянного тока или батареи, и состоят из якоря (ротор), вала, коммутатора, щеток и обмотки возбуждения, создающей постоянное магнитное поле.

Читайте также:  Могут ли оштрафовать за антирадар и видеорегистратор?

Щетки позволяют создавать магнитный поток в коллекторе обратной полярности по отношению к постоянному магнитному потоку обмотки возбуждения (ОВ), что заставляет якорь вращаться. Направление вращение электрической машины может быть легко изменено путем изменения полярности на щетках (поменять местами провода от источника питания постоянного тока).

Бесколлекторные электродвигатели постоянного тока (BLDC)

В самом названии уже можно увидеть коренное различие между этими машинами. В BLDC машинах отсутствуют щетки, что делает их конструкцию заметно сложнее. Бесщеточная машина постоянного тока имеет четыре или более постоянных магнита в роторе.

Эффективность – основная фишка данных машин. Поскольку ротор имеет постоянные магниты, он не нуждается в источнике напряжения, следовательно, нет физического подключения. Нет подключения – нет щеточно-коллекторного узла, соответственно, исчезают все проблемы связанные с ним. Но есть и минус – такой тип электрических машин должен иметь электронную систему управления положением ротора в пространстве. Для анализа поворотов машины и выработки управляющих импульсов в нужный момент используют микроконтроллер, а для отслеживания поворота вала в пространстве поворотные датчики или датчики на основе эффекта Холла.

Электродвигатели BLDC представляют собой синхронные машины, что означает, что магнитные поля ротора и статора вращаются с одинаковой частотой. Они могут иметь одно-, двух- и трехфазные конфигурации.

Щетки

Когда дело доходит до выбора электрической машины для основных приложений, здесь могут использоваться как щеточные, так и бесщеточные электродвигатели постоянного тока. И как любые сопоставимые и конкурирующие технологии, коллекторные и бесколлекторные электрические машины имеют свои плюсы и минусы.

Но с другой стороны коллекторные машины являются более дешевыми и надежными. Они предлагают простейшее управление (для запуска достаточно подключить к источнику постоянного тока, а для управления скоростью вращения достаточно изменять величину подводимого к якорю напряжения). При постоянном уходе за коллекторным узлом и плановой заменой щеток такая машина может служить довольно долго и надежно. Для управления ими не нужно создавать сверх сложных систем управления и можно обойтись минимальным количеством внешних компонентов или вообще без них, такие электродвигатели хорошо подходят для тяжелых условий работы.

Один из главных недостатков – постоянный уход за щетками. Они должны постоянно очищаться и при необходимости заменяться для обеспечения надежности работы механизма. Кроме того, если необходим большой вращающий момент, то коллекторный электродвигатель постоянного тока будет ограничен пропускной способностью щеток. По мере увеличения скорости вращения – возрастают потери крутящего момента, связанные с процессами трения в щеточно-коллекторном узле.

Однако бывают устройства, которые данные характеристики вполне устраивают. Например, электрические зубные щетки требуют более высоких скоростей с уменьшающимся крутящим моментом, что хорошо для щетки, зубов и десен.

К другим недостаткам коллекторных машин постоянного тока можно отнести ухудшенные условия охлаждения, вызванные щеточно-коллекторным узлом, высокую инерционность якоря (ротора), ограниченный диапазон скоростей, электромагнитные помехи (EMI).

Отсутствие щеток

Бесколлекторные электродвигатели постоянного тока (BLDC) имеют ряд преимуществ перед своими «щеточными братьями». Во-первых, они могут реализовать функцию точного позиционирования, полагаясь на датчики положения на основе эффекта Холла для коммутации. Они также требуют меньше, а иногда и никакого обслуживания из-за отсутствия щеток.

Они побеждают коллекторные машины постоянного тока в отношении скорость / крутящий момент благодаря их способности поддерживать или увеличивать крутящий момент на разных скоростях. Важно отметить, что потери мощности в коллекторном узле полностью отсутствуют, что значительно повышает эффективность компонентов. Другие профили BLDC включают высокую выходную мощность, малый размер, лучшую теплоотдачу, более высокие диапазоны скоростей и малошумную (механическую и электрическую) работу.

Тем не менее, нет ничего идеального. BLDC имеют более высокую стоимость. Они также требуют специальные стратегии управления, которые могут быть как сложными, так и дорогостоящими. И им нужен контроллер, который может стоить почти столько же, а иногда и больше, чем управляемый им электродвигатель BLDC.

Выбор типа электродвигателя для механизма

Нижний порог для выбора между компонентами любого типа — это тип приложения и ограничение затрат для конечного продукта. Например, игрушечный робот, ориентированный на детей от шести до восьми лет, может потребовать от четырех до девяти электродвигателей. Они могут быть коллекторными или бесколлекторными машинами постоянного тока или их компоновкой.

Если данный робот выполняет только основные движения или входит в игрушечный набор, нет необходимости применять бесколлекторные BLDC машины, которые стоят дороже, чем их коллекторные аналоги. Игрушка или набор, вероятно, попадут в мусорный ящик задолго до того, как щетки электрической машины выйдут из строя.

Типичные электроприводы с электродвигателем постоянного тока включают моторизованные игрушки, приборы и компьютерную периферию. Автопроизводители «привлекают» их к электроприводам окон, сидений и другим конструкциям в салоне из-за их низкой стоимости и простого исполнения.

Бесколлекторные электродвигатели более универсальны, главным образом из-за их «сообразительности» в отношении скорости и крутящего момента. Они также поставляются в компактных корпусах, что делает их «жизнеспособными» для различных небольших конструкций. Типичные приложения включают компьютерные жесткие диски, механические мультимедийные проигрыватели, вентиляторы с электронным управлением, беспроводные электроинструменты, HVAC и холодильные установки, промышленные и производственные системы и CD приводы.

Автомобильная промышленность применяет бесколлекторные BLDC машины для электрических и гибридных автомобилей. Эти электродвигатели представляют собой, по существу, синхронные машины с постоянными магнитами в роторе. Другие уникальные применения включают электрические велосипеды, где двигатели устанавливаются в колеса или колпаки, промышленное позиционирование и управление, монтажные роботы и линейные приводы для управления клапаном.

Оценка маломощных бесколлекторных, коллекторных и шаговых двигателей и их драйверов

20 сентября 2018

Какой тип маломощного двигателя постоянного тока выбрать из трех существующих? Это определяется поставленной задачей, но, вне зависимости от выбора, у STMicroelectronics найдется микросхема драйвера для любого из них.

Диапазон применений маломощных двигателей постоянного тока (DC) расширился в результате многих факторов. Во-первых, двигатели стали более эффективными и мощными благодаря новым магнитным материалам. Во-вторых, в связи с использованием интеллектуальных микросхем с интегрированными полевыми транзисторами (FET) управление двигателями стало более легким. В-третьих, несмотря на то, что в большинстве приложений интернета вещей (IoT) лишь регистрируются те или иные состояния, а потребности в движении не возникает, рост разнообразия приложений IoT привел к необходимости малогабаритных двигателей.

Что такое маломощный двигатель постоянного тока? Официального определения или стандарта нет, но универсальное понимание в индустрии таково: двигатель со среднеквадратичным (RMS) значением тока привода до 1 А и пиковым значением тока 2 А считается маломощным устройством. Эти цифры могут показаться достаточно большими по сравнению с потреблением соответствующей электроникой миллиамперных токов. Однако многие из вышеуказанных двигателей используются в приложениях с малым коэффициентом заполнения, чьи совокупные потребности в энергии довольно скромны, даже если собственные требования приложений к максимальной мощности намного больше, чем необходимо их электронной составляющей.

Области применения маломощных двигателей разнообразны: от электроники для развлечений – до стандартной продукции и изделий для ответственного применения. Вот несколько сфер, где они используются:

  • беспроводные системы Smart HVAC;
  • регулировка и тонкая настройка производственных процессов;
  • научное приборостроение;
  • игры и развлечения;
  • роботизированные приводы;
  • медицинское оборудование, например — для позиционирования зондов, для контроля потока жидкости и для лабораторной диагностики.

Три основные топологии двигателя

Три часто используемые конфигурации маломощных DC-двигателей – коллекторные, бесколлекторные (BLDC) и шаговые. Каждый из них работает благодаря взаимодействию между токами в катушках (или обмотках) и постоянными магнитами (в большинстве конструкций), что приводит к притяжению/отталкиванию магнитного поля, вызывающему вращение. Все три вида двигателей имеют некоторые сходства, но отличаются методом управления переключением тока, протекающего через обмотки ротора и статора.

Они также отличаются возможностью выполнения определенных задач, качеством этого выполнения и гибкостью управления.

  • Исторически первым был двигатель коллекторного типа. По мере вращения ротора контактные щетки, представляющие собой сплошные контакты, состоящие, как правило, из графита, касаются соответствующих областей на роторе (рисунок 1). По мере вращения ротора изменение точек контакта щетки вызывает изменение направления потока тока и, следовательно, магнитного поля. Затем взаимодействие магнитного поля между ротором и статором меняется на противоположное, что вынуждает ротор продолжать движение.

Рис. 1. Коллекторный двигатель постоянного тока

Данная механическая схема концептуально проста. Однако ее недостаток в том, что щетки изнашиваются и нуждаются в замене, реализация интеллектуального управления сложна, потому что переключить данный двигатель довольно трудно, к тому же, щетки создают электромагнитные помехи (EMI), также известные как радиочастотные помехи (RFI).

В простейшем варианте коллекторный двигатель не нуждается в электронном управлении – он просто работает в зависимости от токовой и механической нагрузок. В других вариантах силовая шина двигателя включается и выключается при помощи транзисторной схемы, что является простейшим вариантом управления. Также возможно использование микросхемы-драйвера для повышения производительности и обеспечения контроля над скоростью и вращательным моментом.

  • В двигателе BLDC механическая коммутация заменена электрической с использованием транзисторов. Чаще всего используются МОП-транзисторы (MOSFET), которые управляются драйвером затвора (в некоторых конструкциях используются биполярные транзисторы с изолированным затвором – IGBT). Отдельный контроллер управляет точным переключением катушки в момент, необходимый для поддержания вращения двигателя на желаемой скорости (рисунок 2).
Читайте также:  УАЗ Хантер - технические характеристики: размеры, расход потлива, клиренс

Рис. 2. Бесколлекторный двигатель постоянного тока

Примечание: двигатели BLDC иногда называют электронно-коммутируемыми (EC) двигателями, что является более точным определением.

В BLDC магнитное поле ротора присутствует всегда, оно генерируется постоянными магнитами. Когда ток направляется от одной фазы двигателя к другой, магнитные поля объединяются, генерируя изменяющееся поле статора.

Управление двигателем производится не только при помощи электроники. Вместо этого переключение может быть сформировано в драйвере затвора с контролируемым временем нарастания и спада для уменьшения EMI/RFI. Основная проблема заключается в том, что более мягкое переключение приводит к потере мощности и снижению КПД двигателя, и в этой ситуации разработчику необходимо найти максимально компромиссное решение. Некоторые новые драйверы затвора используют множество сложных и тонких трюков, чтобы облегчить эту задачу.

  • Шаговый двигатель использует концепцию двигателя BLDC, включая в себя большое количество катушек (или полюсов), расположенных по периферии двигателя (рисунок 3). Путем поочередного включения и выключения этих полюсов индуцируется шаг и вращение ротора в прямом или обратном направлении.

Рис. 3. Шаговый двигатель

Полюсов может быть и 16, и 128 (или более), в зависимости от требуемой точности вращения, прямо пропорциональной их количеству. Шаговые двигатели доступны в однополярных двухфазных и биполярных двух-, трех- и пятифазных конфигурациях. Самый распространенный из них – биполярный двухфазный двигатель.

В шаговом двигателе магнитное поле ротора генерируется постоянным магнитом, а магнитное поле статора – током, протекающим в определенной фазе. В результате ротор будет выравниваться в соответствии с магнитным полем статора, чтобы достичь заданного положения.

Шаговый двигатель хорошо подходит для задач, где необходимы быстрые остановка/запуск, позиционирование или движение назад/вперед, однако он не подойдет для долговременной непрерывной работы. Он часто используется в принтерах и приборах с поэтапным позиционированием (это только два из его многочисленных применений). Несмотря на то, что точность позиционирования зависит от числа полюсов, использование усовершенствованного метода, в котором смежные полюсы включаются частично (так называемый «микрошаг»), позволяет более точно управлять переключением и позиционированием.

Для управления двигателем необходима как мощность, так и стратегия

Полная система управления двигателем состоит из нескольких функциональных блоков (рисунок 4):

Рис. 4. Путь сигнала управления двигателем

  • Контроллер. Контроллер решает, что мотор должен делать для выполнения текущей задачи в данный момент времени, и определяет, какая мощность в какой момент необходима для полюсов. Он может представлять собой отдельную интегральную схему с фиксированной функцией или быть частью прошивки более крупной системы.

Если к двигателю подключают контур обратной связи, как сейчас делают многие производители, добавляя датчик положения на вал ротора, то контроллер также оценивает положение и скорость двигателя и определяет соответствующие изменения, необходимые для управления мощностью.

  • Выходной сигнал контроллера подается на драйвер управления затвором, который преобразует низковольтные и слаботоковые команды включения/выключения в более высокие токи (и часто более высокие напряжения), необходимые МОП-транзистору (или IGBT). Довольно часто драйвер гальванически изолирован.
  • МОП-транзисторы (или IGBT) являются фактическими ключами питания, которые управляют подачей тока на катушки двигателя.
  • Катушки двигателя. Ток, протекающий через обмотки катушки двигателя, создает электромагнитное поле, которое взаимодействует со стационарными магнитами в двигателе, заставляя его начать вращение.

Сходства и различия интегральных схем для управления двигателем

Преимущество маломощных двигателей, помимо их скромных потребностей в токе и напряжении, заключается в том, что драйверы затвора MOSFET могут быть интегрированы с контроллерами и оптимизированы для конкретных потребностей. Рассмотрим трио соответствующих предложений от STMicroelectronics. Эти три микросхемы от ST имеют множество базовых характеристик, которые позволяют применять их совместно с различными типами двигателей. Помимо этого, они облегчают моделирование и просты в изучении.

Вот несколько преимуществ, которыми обладают эти изделия:

  • максимальная интеграция с использованием интерфейса микроконтроллера (MCU), логики управления, драйвера и моста МОП-транзистора (требуется только несколько пассивных компонентов и нет необходимости во внешних активных компонентах);
  • малое рабочее напряжение 1,8…10 В, которое хорошо подходит для низковольтных двигателей, в особенности – для работающих от небольших аккумуляторных батарей;
  • высокий выходной ток до 1,3 A (RMS) и 2 A (пиковое значение) для каждого выхода;
  • энергопотребление в режиме ожидания до 80 нA;
  • повышенная надежность благодаря блокировке при падении напряжения (UVLO), тепловой защите и защите от перегрузки по току;
  • небольшой QFN-корпус размером 3×3 мм.

Рассмотрим сходства и различия трех данных микросхем для управления двигателем. STSPIN220, предназначенная для шаговых двигателей, объединяет в себе логику управления, высокую эффективность и малое сопротивление «сток-исток» открытого канала RDS(ON) (рисунок 5). Контроллер реализует управление токовым режимом с помощью широтно-импульсной модуляции (PWM) с программируемым временем выключения. STSPIN220 поддерживает разрешение 256 микрошагов на один полный шаг, что позволяет сделать движение максимально плавным.

Рис. 5. Микросхема STSPIN220 для управления шаговым двигателем

Микросхемы, аналогичные модели STSPIN220:

  • STSPIN230 – монолитный драйвер для трехфазных двигателей BLDC;
  • STSPIN240 – монолитный драйвер для двух независимых двигателей постоянного тока;
  • STSPIN250 – монолитный драйвер для одного двигателя постоянного тока.

Примечание: драйвер STSPIN250 предназначен для одного двигателя в отличие от двухмоторного драйвера STSPIN240. STSPIN250 может обеспечивать более высокий ток 2,6 А (среднеквадратичное значение) и 4 А (пиковое значение).

Все эти интегральные схемы имеют максимально схожий внешний интерфейс и оперативные команды, функционально отличаются лишь их интерфейсы со стороны двигателя.

Делаем выбор

Решение о выборе типа двигателя является простым и сложным одновременно. Даже при существовании основных принципов выбора могут возникнуть ситуации, которые будут исключением из правил. Каждый тип двигателя отличается характеристиками скорости, угла поворота против крутящего момента, остановки. При выборе необходимо сопоставить желаемые функции и ограничения готового устройства с параметрами двигателя.

В большинстве случаев коллекторный и бесколлекторный двигатели не подходят для решений, в которых необходим шаговый вариант. Он лучше подходит для постоянного чередования запуска/остановки/позиционирования, в то время как первые два более пригодны для непрерывной работы. При выборе между коллекторным и бесколлекторным двигателями рассмотрите следующие аспекты:

  • коллекторные двигатели имеют меньший срок службы, чем двигатели BLDC; в первом случае срок службы зависит от износа подшипников и щеточного механизма, во втором срок ограничен только износом подшипников. Кроме того, щетки, быстро собирающие проводящую пыль, могут загрязнять другие поверхности;
  • высококачественные коллекторные двигатели могут достигать скорости 10 000 об/мин, в то время как конструкции двигателей BLDC позволяют увеличить эту скорость в 5 или даже в 10 раз;
  • коллекторные двигатели могут работать непосредственно от источника питания и, следовательно, нуждаются только в двух проводах, в то время как двигатели BLDC нуждаются в электронной коммутации, и в этом случае необходимо не менее трех проводов плюс провода датчика;
  • КПД обоих типов примерно одинаков, а вот источники потерь в них различаются. Для коллекторных двигателей большая их часть возникает в обмотках и при трении, связанном со щеточным механизмом, в то время как двигатели BLDC испытывают те же потери в обмотках, плюс дополнительные потери от вихревых токов, которые растут с увеличением скорости;
  • схема управления для шаговых двигателей изначально является гораздо более сложной, чем для коллекторных, но новые интегральные схемы, например, разработки STMicroelectronics, практически устраняют эти различия;
  • маломощный коллекторный двигатель, например, для недорогой игрушки, может быть наиболее экономичным решением в плане электропроводки и электроники управления (если она есть), но при этом он может обеспечить весьма ограниченную производительность.

Заключение

Бессчетное количество информационных справок о двигателях охватывает академическую теорию, возможные реализации, варианты использования, механические, электрические и термические проблемы, функции привода и элементы управления от простейших до продвинутых. Одним из полезных источников является «An Introduction to Electric Motors» от ST. Для более глубокого ознакомления с шаговыми двигателями и микрошагами, которые не так интуитивно понятны, как коллекторные и бесколлекторные двигатели, смотрите «Application Note AN4923 STSPIN220: Step-Mode Selection and On-the-Fly Switching to Full-Step».

Ссылка на основную публикацию