Двигатели DOHC. Конструктивные особенности

Двигатели DOHC и SOHC: различия, преимущества и недостатки

Сравнивая характеристики автомобиля перед приобретением, будущий владелец сталкивается с массой информации. Одним из пунктов новых знаний являются параметры и тип двигателя. Здесь можно встретить аббревиатуру DOHC или SOHC. Для простого обывателя эти буквы мало что значат, поэтому приведенная информация расскажет, в чем принципиальное отличие этих механизмов, а также в чем разница SOHC и DOHC.

Что такое двигатель DOHC

Устройство механизма газораспределения на дизельных и двигателях внутреннего сгорания предполагает наличие специальных клапанов впуска топливно – воздушной смеси и выпуска отработанных газов. Слаженная работа этой системы определяет движение автомобиля, позволяет механизму избежать рывков и пробуксировки на месте. Что значит DOHC? Аббревиатура расшифровывается как «Double Over Head Camshaft» или «двойной верхний распределительный вал», находится по два вала вращения, на каждом из которых находятся либо впускные, либо выпускные клапаны.

Что такое двигатель SOHC

Прототипом современных двигателей с двумя распределительными валами является система с одним, носящая обозначение Single Over Head Camshaft или SOHC. Ранее использовался термин OHC — Overhead Camshaft, но его решили заменить после появления модификации DOHC. Это считается классическим решением в автомобилестроении, хотя сейчас подобные устройства можно встретить только на бюджетных и старых авто.

Чем отличается DOHC от SOHC и от других типов двигателя

Строение газораспределительного механизма, пройдя определенный этап своего развития, приобрело еще несколько ключевых отличий. В первую очередь, в двигателях с двумя валами пришлось отказаться от ременной передачи. С одной стороны, это усложнило конструкцию, ведь ремни пришлось заменить цепью или шестернями. Положительный момент здесь — лучшая управляемость и надежность подобного устройства, ведь при обрыве ремня автоматически происходят повреждения клапана и поршня, что влечет за собой проблемы в работе двигателя.

Система газораспределения DOHC считается более надежной и контролируемой, а также помогает оптимально расходовать топливо с большей отдачей. Через отверстия двух клапанов в камеру попадает в полтора раза больше топливно – воздушной смеси, следовательно, увеличивается мощность и производительность двигателя. Это второе главное отличие, хотя пунктов здесь может быть и больше.

Преимущества DOHC

Система отлично показала свою эффективность в плане увеличения мощности двигателя (примерно на 15 – 20 л.с.) при одинаковых показателях. Кроме того, это позволяет экономичные расходовать топливо не в ущерб производительности. Именно поэтому большинство современных автомобилей оснащено подобным механизмом.

Недостатки DOHC

Приведенная информация указывает на совершенство системы газораспределения с двумя валами. Вместе с тем, двигатель DOHC 16 v также не лишен некоторых недостатков, присущих этой системе распределения.

  • Высокая стоимость системы по сравнению с аналогом.
  • Затраты на замену или ремонт также возрастают.
  • Чувствительность к составу используемых масел, в особенности при дополнительном оснащении гидрокомпенсаторами.
  • Высокий уровень шума при работе.

Несмотря на эти нюансы, двигатели DOHC уверенно завоевывают рынок, поэтому можно считать, что именно за подобными системами (или их усовершенствованными модификациями) будет будущее.

Преимущества SOHC

Система SOHC, несмотря на некоторое устаревание, все еще актуальна и востребована. Даже на современных авто она по – прежнему используется, но это касается по большей части недорогих марок и моделей. Главное преимущество подобного варианта — низкая стоимость при покупке и ремонте. Кроме того, ременная передача, используемая в системе, отличается менее шумной работой. Для DOHC выходом стало использование специальных гидрокомпенсаторов, снижающих уровень шума в процессе работы двигателя, но это усовершенствование также повлекло за собой дополнительные затраты и увеличение себестоимости.

Недостатки SOHC

Подобные системы широко используются для бюджетных авто, что позволяет снизить и дальнейшие расходы на обслуживание. При этом необходимо отчетливо понимать и обратную сторону медали — риски, связанные с использованием этого механизма.

  • Ненадежность ременной передачи, при обрыве которой повреждения могут получить не только элементы системы, но и сам двигатель.
  • Повышенный расход топлива при относительно небольшом КПД двигателя.
  • Необходимость регулярного осмотра и профилактики.

В устройстве автомобиля работу двигателя определяет много факторов, одним из которых является тип газораспределительной системы. Существует две наиболее распространенные категории: SOHC и DOHC, каждая из которых имеет преимущества и недостатки. Чем отличается DOHC от SOHC, как функционирует механизм и некоторые другие нюансы рассмотрены в приведенной информации.

Двигатели DOHC (Double OverHead Camshaft). Конструктивные особенности

Двигатели DOHC. Конструктивные особенности

В данной статье расскажем как создавались двигатели DOHC, их конструктивные особенности.

Двигатель с двумя распредвалами в головке цилиндров (Double OverHead Camshaft).

При этом существуют две серьёзно различающиеся разновидности этого механизма, отличающиеся количеством клапанов.

– DOHC с двумя клапанами на цилиндр. Эта схема является усложнённой разновидностью обычной OHC. В головке блока цилиндров расположены два распредвала, один из которых приводит впускные клапаны, второй — выпускные. Эта схема применялась в 1960-х — 1970-х годах.

Схема позволяет значительно увеличить количество оборотов коленчатого вала за счёт уменьшения его инерции, следовательно, увеличить мощность, снимаемую с двигателя. Например, мощность модификации двигателя с двумя распределительными валами объёмом 1,6 литра составляла 100 — 130 л. с.

– DOHC с четырьмя и более клапанами на цилиндр. Два распредвала, каждый из которых приводит свой ряд клапанов. Как правило, один распредвал толкает два впускных клапана, другой — два выпускных. Фактически, двухрядный вариант схемы OHC со вдвое большим количеством распредвалов и клапанов, однако могут осуществляться и иные схемы с общим количеством клапанов на цилиндр от трёх до шести.

Схема даёт большое преимущество по мощностной отдаче, особенно на высоких оборотах — за счёт лучшего наполнения цилиндра. Однако такой двигатель из-за быстрого очищения цилиндра более чувствителен к длительности фазы перекрытия клапанов (когда открыты одновременно впускные и выпускные клапаны) — при высокой скорости длительность фазы должна быть больше для лучшей очистки цилиндров, однако на низких оборотах это приводит к потерям заряда горючей смеси и снижению эффективности работы. Радикальным решением проблемы является применение изменяемых фаз газораспределения.

Двигатели с четырьмя клапанами на цилиндр применяются на большей части выпускаемых в настоящее время автомобилей.

Даже если двигатель имеет более одной головки блока цилиндров, и, следовательно, более двух распредвалов, в итоге он всё равно относится к схеме DOHC.

Ярким представителем двигателей DOHC являются двигатели Nissan VQ-серии.

Через два впускных клапанов малого диаметра в цилиндр поступит примерно в полтора раза больше горючей смеси, чем через один большой. Кроме того, смесь при такой конструкции будет лучше сгорать, вырастет КПД и экономичность двигателя.

Для привода двух распределительных валов в головке цилиндров можно использовать зубчатый ремень, цепь или набор шестерен.

Ремень дешев, не требует смазки, практически бесшумен, но обрыв ремня ГРМ означает катастрофу для двигателя: клапан наталкивается на поршень, оба разрушаются, повреждая одновременно гильзу цилиндра и блок. Цепь надежней, хотя и шумнее. Недостаток — постепенное вытягивание. Устройства для автоматического натяжения решают проблему, но для цепи, которая должна работать в масляном “тумане”, необходим еще и герметичный картер. Набор шестерен сложен, дорог и очень шумен, но абсолютно надежен. Пока конструкторский рейтинг выглядит так: выше всех — ремень, потом — цепь и, наконец, шестерни.

Читайте также:  Рамный внедорожник - что это такое? Устройство и принцип работы. Фото и видео

Не забудем, что чем выше степень сжатия, тем выше КПД мотора. И не удивительно, что современные двигатели работают с высокими степенями сжатия. В таких случаях самая выгодная форма камеры сгорания — полусферическая — превращается в шаровой сегмент.

Приходится искать компромисс. С одной стороны, надо сделать камеру сгорания шарообразной, а с другой — “шатер” должен быть покатым, со скругленными углами. Этого можно добиться только уменьшая угол между впускными и выпускными клапанами. Словом, дан приказ: выше степень сжатия — меньше угол между клапанами.

При четырех клапанах на цилиндр единственное место для свечи в камере сгорания — в центре. Длинные газовые каналы увеличивают высоту головки цилиндров, что свеча оказывается на дне глубокого колодца. Вывернуть и заменить свечи зажигания поможет специальный ключ. А если “колодец” заполнить чем-нибудь полезным, скажем, разместить сразу над свечой катушку зажигания? И заткнуть сверху колодец герметичной пробкой, через которую пропустить кабель? Тогда в сырую погоду провод от катушки зажигания к свече всегда будет сухим.

Схема привода клапанов DOHC страдает недостатком. Для регулировки клапанных зазоров приходится вынимать валы, нарушать установку фаз газораспределения и подбирать толщину регулировочных шайб между кулачком и толкателем. Потом снова сборка, повторное измерение зазора и, если не угадали с прокладками – всё сначала. Конструкторы придумали регулировочные устройства, но те лишь утяжеляли детали клапанного привода и достоинства DOHC превращались в минусы.

А если в зазор между “затылком” клапана и толкателем подавать под давлением масло из системы смазки? И чтобы зазор выбирался в зависимости, холодный двигатель или горячий, изношено гнездо клапана или нет. Тогда появился гидравлический компенсатор зазора, который ныне применяется на моторах с DOHC.

Двигатель DOHC 16V: устройство, принцип работы, преимущества, отзывы


Существует две разновидности DOHC-моторов. Первая группа – двигатели с двумя клапанами на цилиндр. Вторая группа – моторы с четырьмя клапанами на цилиндр. Каждая группа имеет ряд особенностей.
Такой тип цилиндра является усложненным вариантом обычного ОНС (Overhead Camshaft). Принцип работы этого цилиндра заключается в работе двух распредвалов, расположенных в головке блока цилиндров – один распределительный вал приводит в движение выпускные клапаны, а второй – впускные.

Двигатели с двумя клапанами на цилиндр активно использовались в 60-70 годы минувшего столетия. Основными марками авто, где применялись такие моторы, были Alfa Romeo, Jaguar, Fiat 125, Ford и отечественный «Москвич». Однако начиная с 1994 года, уровень использования двухклапанных DOHC-моторов стал снижаться.

В DOHC-моторах с четырехклапанным цилиндром каждый распределительный вал приводит в действие свой ряд клапанов. Первый распредвал запускает впускные клапаны (2 шт.), а второй распредвал – выпускные клапаны (2 шт.).

DOHC-моторы с четырехклапанным цилиндром устанавливаются на легковых автомобилях:

  • УАЗ;
  • «Газель», «Волга» (на машинах, выпущенных до 2008 года);
  • ВАЗ-2112.

Двигатели DOHC и SOHC стали применятся с 60-х годов XX столетия. Они имеют схожее предназначение и могут быть дизельными либо бензиновыми. Однако между ними есть одно существенное различие.

Устройство SOHC (слева) и DOHC двигателей

Моторы SOHC созданы с одним распределительным валом, а двигатели системы DOHC оснащены двумя распределительными валами. В результате в SOHC-моторе все клапаны приводятся в движение одним распредвалом, а в DOHC-двигателях – двумя распредвалами.

К преимуществам DOHC-двигателей относится:

  • увеличение мощности мотора в среднем на 10-25 лошадиных сил – увеличение стало возможным благодаря распределению усилий двигателя, поровну на оба вала;
  • улучшение динамичности работы систем мотора – это приводит к уменьшению расхода масла и к улучшению плавности хода машины;
  • улучшенные характеристики по разгону авто;
  • наличие гидрокомпенсатора – он способствует уменьшению исходящего шума во время работы мотора;
  • уменьшение расхода топлива до 30%, при той же мощности мотора.

К минусам системы DOHC относится:

  • сложность конструкции – она заключается в усложненном процессе регулирования узлов газораспределительной системы и уровне ремонтопригодности двигателя;
  • необходимость использовать в работе двигателя только высококачественные, синтетические моторные масла;
  • необходимость часто осуществлять замену моторного масла;
  • потребность периодически регулировать клапанные зазоры – чтобы их регулировать, нужно выполнять ряд действий: вынуть распределительный вал, подобрать толщину регулировочной шайбы, нарушить установку фазы газораспределения, осуществить сборку мотора в обратном порядке;
  • необходимость использовать более сложную систему ГРМ.

Что такое двигатель SOHC

Single Over Head Camshaft (единый верхний распредвал) — такие моторы были на пике популярности в 60-70-е года впрошлого века. Компоновка представляет собой верхнее расположение распредвала (в головке блока цилиндров), а также несколько вариантов расположения клапанов:

  • приведение клапанов посредством коромысел, которые установлены на отдельной оси, при этом впускные и выпускные клапана распложены V-образно. Подобная система широко применялась на американских автомобилях, отечественом моторе УЗАМ-412, пользовалась популярностью благодаря отличной продувки цилиндра;
  • приведение клапанов в действие с помощью рокеров, на которые действует сила кулачков вращающегося вала, при этом клапана расположены в ряд;
  • наличие толкателей (гидрокомпенсаторов или подпятников), которые расположены между клапаном и кулачком распредвала.

На сегодняшний день многие производители автомобилей с 8-клапанным мотором используются компоновку SOHC, как базовую, соответственно дешевую версию.

Что такое двигатель DOHC. Особенности, конструкция, преимущества и недостатки

Про Тачку ⁄ Обслуживание и ремонт ⁄

Каждый мало-мальски грамотный автомобилист знает, что на некоторых автомобилях пишется аббревиатура DOHC. Как правило, такой надписью хвалятся американские автомобили, в частности, модели от компании General Motors. DOHC – это обозначения типа двигателя автомобиля, а о том, каковы его технические особенности, какими достоинствами и недостатками обладают двигатели данного типа, мы поговорим более подробно.

Что такое двигатель DOHC

Устройство механизма газораспределения на дизельных и двигателях внутреннего сгорания предполагает наличие специальных клапанов впуска топливно – воздушной смеси и выпуска отработанных газов. Слаженная работа этой системы определяет движение автомобиля, позволяет механизму избежать рывков и пробуксировки на месте. Что значит DOHC? Аббревиатура расшифровывается как «Double Over Head Camshaft» или «двойной верхний распределительный вал», находится по два вала вращения, на каждом из которых находятся либо впускные, либо выпускные клапаны.

Первый тип — с двумя клапанами на цилиндр

Такой тип двигателя имеет два распределительных вала в одной головки блока. Только один распределительный вал служит для впрыска топливной смеси (один клапан на цилиндр), а другой распределительный вал служит для вывода отработанных газов (также один клапан на цилиндр). Такой тип двигателя это усовершенствованная версия двигателя SOHC. Такие двигатели применялись в 1960 – 1970 х годах, на некоторых автомобилях, например – Fiat 125, Москвич 412 Р и на некоторых моделях компании FORD и Jaguar. Но уже в 1970 года этот тип сменился на другой.

Читайте также:  Что грозит за пересечение сплошной линии разметки и что именно согласно ПДД считается нарушением?

Чем отличается DOHC от SOHC и от других типов двигателя

Строение газораспределительного механизма, пройдя определенный этап своего развития, приобрело еще несколько ключевых отличий. В первую очередь, в двигателях с двумя валами пришлось отказаться от ременной передачи. С одной стороны, это усложнило конструкцию, ведь ремни пришлось заменить цепью или шестернями. Положительный момент здесь — лучшая управляемость и надежность подобного устройства, ведь при обрыве ремня автоматически происходят повреждения клапана и поршня, что влечет за собой проблемы в работе двигателя.

Система газораспределения DOHC считается более надежной и контролируемой, а также помогает оптимально расходовать топливо с большей отдачей. Через отверстия двух клапанов в камеру попадает в полтора раза больше топливно – воздушной смеси, следовательно, увеличивается мощность и производительность двигателя. Это второе главное отличие, хотя пунктов здесь может быть и больше.

Технические характеристики

ТИП СИЛОВОГО АГРЕГАТАG4FCG4GC
ПАРАМЕТРЫЗНАЧЕНИЕ
ПроизводительBeijing Hyundai Motor Co.Ulsan plant
Объем, куб. см.15911975
Мощность, л. с. (6000 об/мин)122 — 130137 — 143
Крутящий момент, Нм155 (при 4200 об/мин.)184 (при 4500 об/мин.)
Блок цилиндровАлюминиевыйЧугунный
Расположение цилиндроврядное
Количество цилиндров44
Диаметр цилиндра, мм7782
Ход поршня, мм85.493.5
Степень сжатия1110.1
Количество клапанов на цилиндр4
Система питанияИнжектор
Механизм газораспределенияDOHC + система изменения фаз CVVT
Вес, кгнет данных144
ТопливоБензин А-92
Система смазкиКомбинированная (под давлением и разбрызгиванием)
Объем моторного масла, л3.34
Рекомендуемое моторное маслоСинтетическое OW-30 (40), 5W-30 (40)Полусинтетическое 10W-30, 10W-40
Система охлажденияЖидкостная с принудительной циркуляцией в замкнутом объеме
Расход топлива, л/100 км (город/трасса/смешанный)7,9/4,9/6,09,3/7,1/5,9
Расход моторного масла (max.), л/1000 кмдо 1
Моторесурс, тыс. км180300

G4GC устанавливается на KIA: Cerato, Sportage, Ceed, Spectra, Carens. HYUNDAI: Tucson, Coupe, Sonata EF, Trajet, i30.

G4FC устанавливается на KIA: Rio, Ceed, Cerato. HYUNDAI: , Elantra, i20, i30.

Недостатки DOHC

Приведенная информация указывает на совершенство системы газораспределения с двумя валами. Вместе с тем, двигатель DOHC 16 v также не лишен некоторых недостатков, присущих этой системе распределения.

  • Высокая стоимость системы по сравнению с аналогом.
  • Затраты на замену или ремонт также возрастают.
  • Чувствительность к составу используемых масел, в особенности при дополнительном оснащении гидрокомпенсаторами.
  • Высокий уровень шума при работе.

Несмотря на эти нюансы, двигатели DOHC уверенно завоевывают рынок, поэтому можно считать, что именно за подобными системами (или их усовершенствованными модификациями) будет будущее.

Тюнинг моторов КИА (G4GC и G4FC)

Существует несколько способов увеличить мощность силового агрегата G4GC:

  1. Калибровка (перепрошивка ЭБУ) двигателя. При этом специалисты обещают увеличение мощности до 150 л. с.
  2. Для того чтобы поднять мощность мотора G4GC до 160 л. с. необходимо выполнить ряд доработок: внедрить прямоточный выхлоп, установив «паук» 4-2-1; установить распределительные валы с фазой 268/264 и большим подъемом клапанов.
  3. Кроме того можно попробовать увеличить мощность моторов G4GC до 180 л. с. Однако это требует специально изготовленных на заказ распределительных валов с фазой 270 и большим подъемом клапанов. Кроме того необходимо сварить оригинальный турбоколлектор и обеспечить маслоподачу на турбину TD04L. Также понадобятся интеркуллер, пайпинги, форсунки 440 сс, выхлопная труба диаметром 51 или 63 мм. Собранная воедино, такая система при правильной настройке способна обеспечить мощность G4GC до 180 л. с. Однако на сколько хватит его ресурса неизвестно.

Двигатель G4FC также поддается тюнингу:

  • Поднять его мощность до 160 л. с. можно путем установки компрессора РК-23-1 (РК-23-е) и небольшой турбины.

Кроме того необходимо:

  1. установить выхлоп на трубе диаметром 51 мм;
  2. расточить впускные и выпускные каналы ГРМ;
  3. применить большие клапана.

Кроме того, для того чтобы сохранить ресурс двигателя КИА Рио в обязательном порядке придется поставить кованую поршневую группу под степень сжатия 8,5. Если этого не сделать, то двигатель, рассчитанный на степень сжатия 11, попросту развалится.

DOHC является аббревиатурой. Перевод на русский язык дает понять, что имеется в виду под этим словом — это наличие двух распределительных валов. Иногда пользуются русской аббревиатурой DOHC — ДВРВ, чаще ДОШЦ. Произошел двигатель DOHC в результате креативного мышления, опытной езды и стремительности «банды четырех». Такое название дали группе изобретателей, которые представили миру двигатель DOHC.

Преимущества SOHC

Система SOHC, несмотря на некоторое устаревание, все еще актуальна и востребована. Даже на современных авто она по – прежнему используется, но это касается по большей части недорогих марок и моделей. Главное преимущество подобного варианта — низкая стоимость при покупке и ремонте. Кроме того, ременная передача, используемая в системе, отличается менее шумной работой. Для DOHC выходом стало использование специальных гидрокомпенсаторов, снижающих уровень шума в процессе работы двигателя, но это усовершенствование также повлекло за собой дополнительные затраты и увеличение себестоимости.

Основные особенности такого вида двигателя

Преимущества двигателей DOHC

Двигатели, имеющие в своем механизме два распределительных вала, расходуют меньшее количество топливной жидкости, а также мощность таких моторов увеличивается в несколько раз. Более точные показатели — это 10-20 лошадиных сил. Конечно, любители быстрой езды могут остаться не очень довольны подобными данными, но городской транспорт вполне обойдется таким солидным приростом мощностей двигателя. Оснащенные гидрокомпенсаторами двигатели DOHC, работают значительно тише, чем иные их сородичи. Работа двигателя не причиняет никакого дискомфорта.

Недостатки SOHC

Подобные системы широко используются для бюджетных авто, что позволяет снизить и дальнейшие расходы на обслуживание. При этом необходимо отчетливо понимать и обратную сторону медали — риски, связанные с использованием этого механизма.

  • Ненадежность ременной передачи, при обрыве которой повреждения могут получить не только элементы системы, но и сам двигатель.
  • Повышенный расход топлива при относительно небольшом КПД двигателя.
  • Необходимость регулярного осмотра и профилактики.

В устройстве автомобиля работу двигателя определяет много факторов, одним из которых является тип газораспределительной системы. Существует две наиболее распространенные категории: SOHC и DOHC, каждая из которых имеет преимущества и недостатки. Чем отличается DOHC от SOHC, как функционирует механизм и некоторые другие нюансы рассмотрены в приведенной информации.

Техническое обслуживание

Двигатели G4GC и G4FC отличаются своей неприхотливостью в эксплуатации.

Если не принимать во внимание необходимость замены приводного ремня ГРМ (только в моторах G4GC) и регулярную регулировку зазоров клапанов ГРМ, то техническое обслуживание двигателей КИА сводится к периодичной замене расходных материалов (моторное масло и охлаждающая жидкость).

ВНИМАНИЕ! Механизм динамического изменения положения впускного распредвала и электромагнитный клапан, входящие в систему изменения фаз CVVT двигателей автомобилей КИА Рио и др. (в том числе G4GC), представляют собой высокоточные узлы. В связи с этим их замена осуществляется только в сборе.

  • в двигателях G4GC и G4FC
Читайте также:  Перевозка опасных грузов без разрешения — ответственность и штрафы для физ. и юр. лиц за

Двигатель G4GC, также как двигатель G4FC, требует замены моторного масла не позже, чем через 15 000 км пробега. При этом производитель рекомендует при эксплуатации силовых агрегатов в тяжелых условиях выполнять эту процедуру после 7 500 км пройденного пути.

Процесс замены моторного масла осуществляют на горячем моторе, причем одновременно с маслом необходимо заменить масляный, топливный и воздушный фильтры.

Объем масла, заливаемого в двигатель G4FС — 3.3 л; двигатель G4GC — 4 л.

  • Замена охлаждающей жидкости в двигателе автомобиля КИА Сид и др.

Основные признаки, подтверждающие необходимость замены охлаждающей жидкости – рыжий цвет антифриза, маслянистая пленка на его поверхности и другие отклонения от ее первоначального вида.

Производитель рекомендует использовать в качестве охлаждающей жидкости антифриз Hyundai/KIA 07100 — 00200. Он представляет собой хладагент высокого качества, который изготавливается по спецификации производителя силовых агрегатов во многих странах (в том числе и в России) и имеет соответствующий допуск Hyundai Motors.

Замену антифриза в автомобилях КИА осуществляют на холодных моторах. После окончания процедуры двигатель необходимо прогреть до рабочей температуры, после чего убедиться в отсутствии воздушных пробок и проверить уровень антифриза в расширительном бачке.

Объем охлаждающей жидкости, заливаемой в:

  1. мотор G4GC — 6,7…6,8 л;
  2. двигатель G4FC — 5,5…5,8 л.

ВАЖНО: если через несколько дней после начала эксплуатации новая жидкость поменяла свой цвет на коричневый или полностью обесцветилась – значит была приобретена подделка. Такой «антифриз» необходимо срочно заменить.

Плюсы и минусы DOHC

К преимуществам DOHC-двигателей относится:

  • увеличение мощности мотора в среднем на 10-25 лошадиных сил – увеличение стало возможным благодаря распределению усилий двигателя, поровну на оба вала;
  • улучшение динамичности работы систем мотора – это приводит к уменьшению расхода масла и к улучшению плавности хода машины;
  • улучшенные характеристики по разгону авто;
  • наличие гидрокомпенсатора – он способствует уменьшению исходящего шума во время работы мотора;
  • уменьшение расхода топлива до 30%, при той же мощности мотора.

К минусам системы DOHC относится:

  • сложность конструкции – она заключается в усложненном процессе регулирования узлов газораспределительной системы и уровне ремонтопригодности двигателя;
  • необходимость использовать в работе двигателя только высококачественные, синтетические моторные масла;
  • необходимость часто осуществлять замену моторного масла;
  • потребность периодически регулировать клапанные зазоры – чтобы их регулировать, нужно выполнять ряд действий: вынуть распределительный вал, подобрать толщину регулировочной шайбы, нарушить установку фазы газораспределения, осуществить сборку мотора в обратном порядке;
  • необходимость использовать более сложную систему ГРМ.

История создания

За открытие двигателя, получившего всемирное распространение, нужно поблагодарить так называемую «банду четырех». Именно так называлось объединение талантливых и креативных разработчиков компании Peugeot, которые создали DOHC-двигатель. Что это такое будет, они и сами тогда еще не понимали. Просто эти смельчаки были отчаянными гонщиками и поклонниками машин, которые способны развивать фантастическую скорость.

К тому времени в автомобиле стали устанавливать достаточно современные силовые агрегаты с оборотом около 2.000. Однако «банде четырех» было этого мало, и они решили создать достаточно мощный и очень быстрый мотор, который кроме того экономно бы расходовал топливо. Такая конструкция была разработана впервые. Основным автором стал молодой человек по фамилии Зуккарелли.

По его задумке было решено немножко изменить строение силовой установки и разместить распределительные валы над клапанами. После проведения испытаний необходимость в промежуточных элементах отпала сама с собой. Самым сложным было сделать так, чтобы наивысшая температура рабочего газа в камере сгорания поднялась до отметки 2000 градусов. Но и тут конструкторы смогли найти выход, выполнив основные детали из металлов, которые практически не нагреваются. Таким образом, талантливые инженеры смогли создать уникальный агрегат, который пользуется спросом и сегодня.

Принцип работы

Для того чтобы была обеспечена правильная работа двух распределительных валов, использовали специальный зубчатый ремень — это такое же устройство с набором шестеренок или цепь. Из этих 2 способов привода ремень считается более экономичным, поэтому его выбирает большинство автовладельцев. Он обладает рядом преимуществ:

  • работает тихо;
  • не обязательно постоянно его смазывать;
  • стоит недорого.

Среди недостатков ременного привода самым главным считается то, что при обрыве он может натолкнуться на поршень. Из-за этого оба элемента разлетаются и могут существенно повредить гильзу и блок цилиндра. В этом случае не получится отделаться мелким ремонтом, поэтому специалисты рекомендуют проверять состояние детали регулярно.

Если в качестве привода использована цепь, то она издает гораздо больше шума, но будет намного надежнее. Минус этого устройства – растяжение со временем. Чтобы устранить этот недостаток, следует приобрести специальные механизмы, которые выполняют автоматическое натяжение цепи. Также понадобится установить герметичный картер для полноценной смазки.

Отзывы

Многие автоэксперты считают, что мотор с двойным распределительным валом – настоящий прорыв в автомобилестроении, поэтому при выборе машины они рекомендуют именно двигатель DOHC 16v. Отзывы потребителей, использующих транспортное средство с силовой установкой данного типа, полностью соответствуют этому утверждению. Несмотря на то что обслуживание такого мотора обойдется для владельца недешево, любые расходы будут частично компенсированы производительностью и низким расходом горючего.

Что такое самодиагностика двигателя?

Что такое самодиагностика двигателя?

Под бортовой диагностикой (самодиагностикой) понимается система программно-аппаратных средств, способная определить и идентифицировать неисправности системы управления двигателем, двигателя, а также возможные причины их возникновения.

Самодиагностика двигателя решает следующие задачи:

  • Превышение предельных значений токсичности отработавших газов автомобиля,
  • Ухудшение параметров двигателя (например, снижение мощности, увеличение расхода топлива),
  • Выход из строя двигателя или компонентов системы управления.
Как работает бортовая диагностика двигателя?

Информирование водителя о наличии неисправности включением диагностической лампы.

Горящая диагностическая лампа не требует от водителя немедленного прекращения движения и остановки двигателя. Водитель предупреждается, что бортовая система диагностики зафиксировала неисправность двигателя, при этом автомобиль может двигаться самостоятельно в аварийном режиме. В этом случае обязанность водителя — доставить автомобиль в авто сервис.

Мигание диагностической лампы сигнализирует о том, что обнаружена неисправность, которая может привести к серьезным повреждениям других деталей автомобиля (например катализатора).

Сохранение информации об обнаруженной неисправности.

В момент обнаружения неисправности в память заносится код ошибки согласно международной классификации. Коды ошибок и вся сопутствующая дополнительная информация облегчают специалистам поиск и устранение неисправностей в системах управления двигателем.

Активизация аварийных режимов работы двигателя.

При обнаружении неисправности для обеспечения приемлемых ходовых качеств автомобиля, для предотвращения выхода из строя исправных компонентов, для предотвращения выхода значений токсичности отработавших газов – система управления двигателем переходит на аварийные режимы работы. Суть аварийных режимов состоит в том, что при возникновении неисправности в цепи какого-либо датчика, контроллер двигателя использует для расчетов замещающие значения, хранящиеся в его памяти, вместо реального сигнала датчика.

На аварийных режимах автомобиль должен быть способен доехать до авто сервиса. Случается так, что водитель и не подозревает о том, что двигатель работает в аварийном режиме.

Обеспечение взаимодействия с диагностическим оборудованием.

О наличии неисправности система бортовой диагностики сигнализирует зажиганием диагностической лампы. Далее система бортовой диагностики должна обеспечить возможность считывания сохраненной в памяти контроллера диагностической информации с помощью специализированного оборудования.

Для этой цели в системе управления двигателем организован последовательный канал передачи информации, в состав которого входят контроллер, стандартизированная диагностическая колодка для подключения диагностического оборудования и соединяющий их провод (К-линия). Для передачи информации используются стандартизированные протоколы.

С помощью диагностического оборудования специалисты могут считать из памяти контроллера информацию о выявленных ошибках, о самой системе управления двигателем, выполнить серию проверочных тестов.

Облегчение поиска неисправностей двигателя

Современные системы бортовой диагностики способны идентифицировать около сотни неисправностей. Каждой неисправности присваивается свой код согласно международной классификации. Например, код Р0102 соответствует неисправности ‘Датчик массового расхода воздуха. Низкий уровень сигнала’. В данном случае код ошибки однозначно указывает на компонент двигателя, сигнал которого считается ложным, но не определяет причину возникшей неисправности: это может быть и неисправный датчик, и короткое замыкание цепей.

Существуют коды ошибок, которые указывают на неисправности в целой подсистеме. Примером могут служить коды Р0301—Р0304 ‘Пропуски воспламенения в 1—4-м цилиндрах’. Причинами этих кодов могут быть как неисправности электрических компонентов двигателя (модуля или катушки зажигания, свечей, высоковольтных проводов, форсунок), так и механические неисправности двигателя, следствием которых является неравномерное вращение коленвала (например, из-за снижения компрессии).

Существуют неисправности, по которым коды ошибок не фиксируются вообще, но которые влияют на ходовые качества автомобиля.

Чтобы однозначно определить причину неисправности, требуется провести серию проверок с помощью диагностического оборудования. Правильное использование информации, которую выдает система самодиагностики, позволяет максимально сократить время на поиск неисправности.

Автомобильный справочник

для настоящих любителей техники

Функции системы самодиагностики двигателя

Самодиагностика (иногда называемая бортовой диагностикой) это система, которая постоянно держит под наблюдением сигналы различных датчиков и исполнительных механизмов системы управления двигателем (СУД). Эти сигналы сравниваются с их контрольными значениями, которые хранятся в памяти бортового компьютера. О функции системы самодиагностики двигателя, мы и поговорим в этой статье.

Что такое самодиагностика двигателя

Набор таких контрольных значений может быть разным в разных автомобилях и их моделях. Он может в себя включать верхние и нижние допустимые границы контролируемых параметров, допустимое число ошибочных сигналов в единицу времени, неправдоподобные сигналы, сигналы, выходящие за допустимые пределы и др. При выходе сигнала за пределы контрольных значений (например, сопротивление цепи стало равным нулю — короткое замыкание) блок электронного управления (БЭУ) квалифицирует это состояние как неисправность, формирует и помещает в память соответствующий код.

Ранние конструкции систем диагностики были способны формировать и хранить лишь небольшое число кодов. Современные системы в состоянии генерировать и хранить 100 и более кодов и способны еще увеличить это количество по мере того, как программное обеспечение бортовых компьютеров научится выделять новые сбойные ситуации.

Например, в одной диагностической системе все неисправности в какой-то цепи определяются одним кодом. В другой, более совершенной системе, разным неисправ­ностям в этой цепи будут соответствовать разные коды, что поможет быстрее найти неисправный элемент и устранить неис­правность. Возьмем для примера цепь датчика температуры охлаждающей жидкости. В самой простой системе при неисправности в этой цепи появится единственный код — неис­правность цепи в целом. Более совершенная система сможет уже указать, что произошло — короткое замыкание или обрыв цепи. Наконец, в дополнение к коду неисправности может быть зафиксировано, например, такое сопут­ствующее обстоятельство как состав рабочей смеси. В системе управления двигателем с обратной связью, которая поддерживает состав рабочей смеси близким к идеальному, неисправность датчика температуры может вызвать выход состава смеси за допустимые пределы, а это вызовет, в свою очередь появление новых кодов. Во избежание появления слишком большого числа кодов, которое затруднит поиск неисправности, БЭУ перейдет в режим с ограниченным управлением («limp home» — «хромай домой»).

По мере совершенствования БЭУ под его контроль будет попадать все большее число элементов и параметров, которые должны фиксироваться системой диагностики. Эта книга посвящена, в основном, проверке систем, относящихся к двигателю. Однако в таблицах кодов неисправностей, которые приводятся во всех главах, будут упомянуты и коды прочих неисправностей, которые выявляет БЭУ, относящиеся, например, к кондиционеру воздуха или к автоматической трансмиссии.

Недостатки систем диагностики двигателя

Системы диагностики еще не достигли такого идеального состояния, при котором можно было бы полностью положиться на их информацию. Ведь код не может появиться в тех случаях, когда для каких-либо датчиков или состояний программным обеспечением не предусмотрена соответствующая обработка информации. Так, системой диагностики не охвачены механические повреждения двигателя, вторичная цепь зажигания и др. Вместе с тем, побочные эффекты, порож­даемые, например, утечкой вакуума или неисправностью выпускного клапана могут вызвать проблемы с составом смеси или холостым ходом, которые приведут к появлению соответствующих кодов. Таким образом, при появлении таких кодов придется проверить многие системы двигателя, чтобы обнаружить истинную причину неисправности.

Заметим также, что код указывает только на неисправную цепь. Например, код, указывающий на неисправность цепи датчика температуры охлаждающей жидкости, может означать неисправность самого датчика, либо связанных с ним проводов, либо электрических разъемов.

Диагностические системы некоторых автомобилей могут фиксировать случайные сбои, а на других автомобилях системы таких сбоев не фиксируют. В некоторых системах коды неисправностей сбрасываются при выключении зажигания. В таких случаях для обнаружении неисправности надо быть особенно внимательным.

Код неисправности, как правило, позволяет опытному механику быстро найти и устранить отказ. Вместе с тем, отсутствие кодов еще не означает отсутствие неис­правностей, поэтому, несмотря на наличие системы самодиагностики, следует тщательно соблюдать обычные правила технического обслуживания автомобиля.

Ложные сигналы

Нарушения в работе вторичной цепи системы зажигания и в других электрических цепях могут вызвать помехи радиочастотного диапазона, которые способны нарушить работу БЭУ или вызвать появление ложных диаг­ностических кодов. Нарушение работы БЭУ, в свою очередь, может вызвать неправильное управление двигателем.

Предельные уровни сигналов датчиков

Если сигнал датчика остается в заданных пределах, даже если контролируемый им параметр из этих пределов вышел, код неисправности не появится. Например, если датчик температуры двигателя перестал реагировать на изменение температуры, но при этом его сопротивление осталось в пределах запрограммированных границ, неисправность зафиксирована не будет.

Логическое определение неисправности

Программное обеспечение новейших диагностических систем стало более изощренным и способно проследить изме­нение напряжения или тока за определенный промежуток времени. Если сигнал датчика не претерпевает ожидаемого изменения, будет зафиксирован код неисправности.

Системы более ранних конструкций в любом случае зафиксировали бы неис­правность, если контролируемый сигнал вышел за допустимый уровень. При этом не учитывались обстоятельства, при которых возникла неисправность и состояние других цепей. Современные системы принимают во внимание сигналы от нескольких логически связанных элементов и могут сопоставлять их друг с другом. Если, например, обороты двигателя возрастают, дроссельная заслонка полностью открыта, а датчик расхода воздуха не регистрирует нарастание потока, значит датчик неисправен и БЭУ сформирует код его неисправности.

Световой сигнал неисправности

Многие автомобили оснащены световым сигналом о неисправности, который обычно расположен на приборной панели (см. рис. «Световой сигнал неисправности, расположенный на приборной панели» ; надпись на световом табло “CHECK ENG” означает «проверь двигатель»). В некоторых случаях световой сигнал в виде светодиода располагается на панели БЭУ. При включении зажигания световой сигнал загорается. Это означает, что цепь сигнализации и сама лампочка исправны. После пуска двигателя лампочка гаснет и не загорится до тех пор. пока система диагностики не зафиксирует неисправность. При появлении неисправности лампочка загорается и остается включенной, пока неисправность не будет устранена. Если неисправность исчезла, лампочка погаснет, но код неисправности останется в памяти БЭУ, пока его не удалят оттуда принудительно. При возникновении некоторых, не очень серьезных неисправностей световой сигнал может не загораться, хотя код неисправности и в этом случае заносится в память.

На некоторых автомобилях такой световой сигнализации нет, поэтому на них приходится время от времени опрашивать БЭУ с помощью считывателя кодов или мигающего светодиода о наличии или отсутствии неисправностей.

Быстрые и медленные коды

Коды, сохраняемые в памяти БЭУ бывают «быстрые» и «медленные». Медленными называют коды, которые воспроизводятся системой с небольшой скоростью, так что их возможно прочесть с помощью мигающего светодиода или сигнальной лампочки на приборной панели. Быстрые коды воспроизводятся в цифровой форме с высокой скоростью и их нельзя прочесть с помощью мигающей лампочки. Для извлечения таких кодов необходим специальный прибор — считыватель кодов.

Другие функции диагностической системы

Объем, формат и способ прочтения диагностической информации определяет производитель автомобиля. Если программой, которую ввел в БЭУ производитель, не предусмотрено получение какой-то информации, то эту информацию и не удастся получить никаким образом.

Кроме чтения и стирания кодов неисправностей через диагностический разъем обычно можно выполнить следующие дополнительные операции:

  • Проверку цепей исполнительных устройств;
  • Настройки элементов;
  • Кодирование БЭУ;
  • Получение текущей информации;
  • Выполнение функции «путевой рекордер».

Однако не все перечисленные функции могут быть выполнены разными системами. Для выполнения большинства дополнительных операций требуется использование считывателя кодов.

Чтение кодов неисправностей

Коды неисправностей можно извлечь из БЭУ через выходной разъем (последова­тельный порт), подключив к нему подходящий считыватель кодов, либо вручную, при помощи соответствующей процедуры, имеющей свои характерные особенности для каждой конкретной системы (такой способ был основным в ранних моделях; в современных моделях ручной способ, как правило неприменим).

Считыватель кодов или сканер

Профессиональный инструмент, исполь­зуемый для извлечения кодов неисправностей из диагностических систем автомобилей, носит название «считыватель кодов». Иногда этот прибор называют «сканером». Первый термин чаще употребляется в европейских странах, тогда как второй происходит из США. Принципиальной разницы между этими терминами нет и оба термина взаимоза­меняемы, поэтому мы в этой книге будем пользоваться обоими, отдавая все же преимущество европейскому варианту «считыватель».

Ручная процедура извлечения кодов («мигающие коды»)

Некоторые ранние модели диагности­ческих систем предусматривали ручное извлечение кодов. Этот метод хорош тем, что не требует сложного оборудования, но, вместе с тем, он работает очень медленно, число кодов в нем ограничено, а процесс извлечения сопряжен с большой вероятностью ошибок. Обычно в таких системах процесс считывания запускается перемыканием определенной пары контактов в диагностическом разъеме.

Затем начинается считывание кодов, которые воспроизводятся вспышками сигнальной лампочки на панели приборов, либо вспышками специального светодиода на корпусе БЭУ. Получаемые таким образом коды носят название «мигающих кодов» (см. рис. «Воспроизведение 2-раэрядного кода неисправности с помощью сигнальной лампочки или светодиода» ). Сосчитав вспышки и обратившись к таблице кодов (такие таблицы приводятся в конце каждой главы), можно определить вид неисправности. Некоторые системы не оснащены сигнальной лампочкой или светодиодом — в этих случаях для считывания кодов можно использовать переносной светодиод или даже просто аналоговый вольтметр.

Удаление кодов из памяти

По мере совершенствования систем диагностики способы удаления кодов из памяти БЭУ менялись. В середине 80-х годов коды не хранились долго и при выключении зажигания сбрасывались. Затем память БЭУ подключили к аккумулятору минуя замок зажигания, что позволило сохранять коды при выключенном зажигании. Обычно коды в таких системах удаляются с помощью считывателя кодов (СК), однако в некоторых системах предусмотрено и их ручное сбрасывание, например, путем отключения БЭУ от аккумулятора или размыканием разъема БЭУ. В современных БЭУ память имеет свой источник питания, так называемое энергонезависимое питание, что позволяет сохранять коды и при отключенном аккумуляторе. В таких системах удалить коды можно только с использованием считывателя (см. рис. «Обычный пользовательский считыватель кодов» ).

Коды обязательно надо удалить, если выполнилась проверка или замена элементов системы управления двигателем. Часто бывает возможно удалить коды неисправностей, используя процедуру, подобную чтению кодов.

Тестирование элементов и исполнительных устройств

Считыватель кодов можно использовать для тестирования проводов и компонентов в цепях некоторых исполнительных устройств. Например, с его помощью можно активизировать клапан управления холостым ходом. Если клапан активизировался, значит его цепь исправна. Обычно доступны для активизации и тестирования с помощью считывателя кодов цепи топливных форсунок, реле, датчиков и исполнительных устройств системы выхлопа, а также другие цепи и системы. Бывает возможным также протестировать сигналы некоторых датчиков. Например, можно проверить датчик положения дроссельной заслонки, полностью ее открыв, а затем полностью закрыв. Если трек потенциометра имеет дефект, то считыватель покажет неисправность.

Ручная проверка датчиков и активизация элементов

Обычно активизация элементов может быть выполнена только с помощью считывателя кодов. Однако в некоторых системах предусмотрена возможность выполнять проверки без этого прибора. В тех случаях, когда такие проверки возможны, процедуры проверок будут описаны в соответствующих главах.

Регулировки систем

В большинстве современных двигателей невозможно выполнить какую-либо подстройку системы холостого хода или опережения зажигания. Вместе с тем, в некоторых системах ранних конструкций такие регулировки предусмотрены. Примерами могут служить автомобили Ford с системой управления EEC IV, Rover 800 SPi и более ранние модели Rover с системой MEMS. В этих автомобилях возможна регулировка системы холостого хода и зажигания с использованием считывателя кодов.

Кодирование БЭУ

В некоторых системах предусмотрена возможность кодирования БЭУ для выполнения различных операций. Обычно эта функция доступна только дилеру, уполномоченному производителем. Кодирование позволяет привести БЭУ в соответствие с параметрами конкретного данного автомобиля.

Получение текущей информации

Текущая информация — это сигналы, которыми обменивается БЭУ с датчиками и исполнительными устройствами в данный момент. Такие данные могут быть отображены на дисплее считывателя кодов. Эта функция особенно полезна для быстрой проверки подозрительного датчика или исполнительного элемента.

Проверка может быть выполнена на разных оборотах двигателя и при разных значениях температуры. Например, проверку сигнала датчика температуры двигателя можно начать при холодном двигателе, а затем наблюдать его изменения в процессе прогрева. Любые погрешности в работе датчика станут совершенно очевидными.

Конечно, сигналы датчиков можно наблюдать и с помощью осциллоскопа или цифрового мультиметра (тестера), подключая прибор к соответствующей цепи. Однако использование для этих целей считывателя кодов значительно проще и удобнее. Некоторые считыватели кодов можно подключить к обычному персональному компьютеру и занести в его память все интересующие Вас процессы. Затем с помощью подходящего программного обеспечения можно снова просмотреть всю записанную информацию.

Функция «путевой рекордер»

Некоторые системы самодиагностики способны фиксировать и сохранять значения параметров в процессе работы двигателя. Параметры записываются в цифровой форме в виде серии «мгновенных снимков» или кадров. Если неисправность появляется случайным образом и снова исчезает, ее причину бывает очень трудно обнаружить. В этом случае «мгновенный снимок» параметров работы двигателя в момент появления неисправности может сильно облегчить ее обнаружение.

Для выполнения такой записи надо подключить считыватель кодов к диагностическому разъему и вывести автомобиль на дорожные испытания. В самом начале испытаний системы самодиагностики следует перевести в режим «путевого рекордера». Система самодиагностики начнет записывать «мгновенные снимки» через определенные короткие интервалы времени. Поскольку память системы самодиагностики ограничена, число таких снимков не может быть бесконечным. При возникновении неисправности следует нажать кнопку на считывателя кодов, тогда в памяти сохранятся несколько кадров до и после появления неисправности. Затем, вернувшись в гараж, можно не торопясь просмотреть эти кадры с записями и найти решение проблемы.

Следует заметить, что функцией «путевого рекордера» обладают не все системы самодиагностики и считыватель кодов.

Как самому сделать диагностику двигателя

Необходимость диагностики двигателя, которую владелец выполняет самостоятельно, может возникнуть по разным причинам. В одних случаях процедура выполняется регулярно в профилактических целях, в других поверки мотора своими руками позволяют экономить денежные средства и обходиться без посещения автосервиса и т.д.

Также не стоит забывать и о проверенных методах диагностики, которые основаны на анализе шумов, цвета выхлопа и других признаках, косвенно или прямо указывающих на ту или иную проблему.

В этой статье мы поговорим о том, как делают диагностику двигателя, какое оборудование и инструменты будут необходимы, а также какие поломки помогает обнаружить самостоятельная диагностика двигателя автомобиля.

Диагностика двигателя своими руками: для чего нужна и как делается

Прежде всего, своевременная диагностика позволяет оперативно выявить возможные неисправности на начальном этапе. Другими словами, удается быстро определить поломки еще до того, как они перерастут в серьезные неисправности.

Опытные владельцы хорошо знают, что игнорирование мелких проблем в результате может привести к более крупным неприятностям, к капитальному ремонту двигателя или даже к необходимости замены агрегата на контрактный мотор.

С учетом вышесказанного необходимо регулярно проводить профилактические осмотры, а также выполнять диагностику при малейших отклонениях от нормальной работы силовой установки. Что касается профилактики, желательно не реже одного раза в 7 дней проверять уровень моторного масла, рабочей жидкости в системе охлаждения, осматривать патрубки и шланги на предмет растрескивания и повреждений.

Также необходимо следить за состоянием сальников и прокладок. Появление потеков масла говорит о необходимости замены уплотнителей или же устранения причин, по которым смазку «давит».

Начнем с того, что наличие контроллеров и развитая система электронного управления ЭСУД позволяет быстро оценить состояние различных систем двигателя. При этом важно понимать, что во многих случаях одной такой проверки будет мало. Для получения объективных результатов необходимо проводить целый ряд диагностических процедур.

В списке основных действий стоит выделить:

  • визуальный осмотр агрегата и подкапотного пространства;
  • проверка воздушного и топливного фильтров;
  • проверка свечей зажигания и бронепроводов;
  • проверка цепи/ремня ГРМ и правильности их установки;
  • замер компрессии в цилиндрах двигателя;
  • сканирование ошибок при помощи диагностического оборудования;

Что касается необходимых инструментов и оборудования, в рамках минимального комплекта понадобится иметь набор ключей и отверток, компрессометр, а также сканер в диагностический разъем OBD 2 (On-board diagnostics) или ноутбук/ПК со специальным софтом и переходниками для подключения.

Поверхностный осмотр ДВС, замер компрессии и давления топлива

Итак, перед началом работ следует внимательно осмотреть двигатель и подкапотное пространство. Отдельного внимания заслуживают элементы проводки, топливные шланги, патрубки и т.д.

Затем нужно проверить состояние воздушного фильтра, а также фильтра топлива. Если фильтры забиты, тогда это может оказаться причиной сбоев в работе агрегата. Параллельно проверяется уровень технических жидкостей (моторное масло, тосол, антифриз, тормозная жидкость и т.д.).

Далее нужно прогреть мотор до рабочих температур. Затем следует погазовать. Если из выхлопной трубы виден серый, сизый, синий или белый дым, тогда это может указывать на разные проблемы (нарушенное смесеобразование, проблемы со сгоранием топливного заряда, попадание ОЖ или моторного масла в камеру сгорания и т.д.).

В том случае, когда из патрубка летит масло или явно идет дым, тогда это может указывать на проблемы поршневых колец или неполадки самой системы вентиляции. Также в рамках диагностических процедур нужно измерить компрессию и давление топлива.

Чтобы сделать замер компрессии, потребуется выкрутить свечи зажигания на бензиновых моторах или свечи накала на дизельных. При этом также производится визуальный осмотр самих свечей. Если компрессия окажется ниже допустимой нормы, тогда высока вероятность износа ЦПГ, прогара клапана, залегания колец и т.п.

Что касается системы питания, тогда на многих бензиновых агрегатах можно замерить давление топлива в топливной рейке. Такой замер позволяет определить неисправности бензонасоса, загрязнение фильтров топлива, поломки регулятора давления.

Диагностика шумов, свистов и стуков двигателя

Для определения различных посторонних звуков оптимально иметь механический стетоскоп, при помощи которого легче установить источник. Также можно изготовить простейшее приспособление и самому. Для этого достаточно взять деревянную палку, на конце которой закрепляется жестяная или пластиковая банка. Это нехитрое приспособление также позволяет «прослушивать» мотор.

Также в процессе анализа следует внимательно изучить тональность стука (звонкий или глухой), а еще происходит ли изменение частоты и интенсивности с набором оборотов. Параллельно нужно учитывать, что посторонние звуки могут исходить не от самого ДВС, а от навесного оборудования или КПП, приводов и т.д.

Проведение компьютерной диагностики силового агрегата

Для реализации задачи нужно обнаружить универсальный диагностический разъем. Затем через адаптер, который вставляется в указанный разъем, подключается ноутбук, ПК, планшет или смартфон. Отметим, что для самостоятельной диагностики оптимально использовать сканер-адаптер OBDII, который позволяет подключить мобильное устройство без использования проводов.

Например, для проведения компьютерной диагностики двигателя при помощи смартфона нужен адаптер в диагностический разъем, а необходимый софт скачивается и устанавливается на устройство. После этого смартфон и адаптер синхронизируются, а полученные данные отображаются на дисплее. Единственное, нужно учитывать, что программы и оборудование могут быть как универсальными, так и предназначаться только для конкретной марки авто.

Как правило, таким способом выявляются неполадки электронных датчиков, сбои в работе систем и т.п. После того, как проблемный элемент был обнаружен, его также можно проверить тестером-мультиметром. Если после замены или ремонта ошибка исчезла, тогда процедуру можно считать успешной.

Однако в тех случаях, когда проблему не удается решить самостоятельно, для проведения углубленной диагностики потребуется дорогостоящее специализированное оборудование, а также необходимо иметь профессиональные навыки и профильные знания. Вполне очевидно, что в подобной ситуации лучше доставить автомобиль на СТО.

Что в итоге

С учетом приведенной выше информации становится понятно, как проводят диагностику двигателя и его систем своими руками. Главными плюсами такого подхода можно считать возможность контролировать состояние агрегата, а также выявить явные или скрытые неисправности до того момента, пока они не станут причиной более сложного и дорого ремонта.

Напоследок отметим, что даже если владелец не сможет самостоятельно устранить найденную поломку, самостоятельное проведение диагностических процедур во многих случаях позволяет найти причину неисправностей, что ускоряет и удешевляет общий процесс ремонта двигателя, его узлов и систем.

Компьютерная диагностика автомобильного двигателя и других агрегатов: для чего необходима и какие неисправности определяет. Как самому проверить автомобиль.

Признаки неисправности и проверка инжекторных форсунок без демонтажа. Диагностика электропитания форсунок, анализ производительности. Советы и рекомендации.

Способы проверки двигателя при выборе автомобиля б/у: диагностика по внешнему виду, звуку работы, состоянию свечей зажигания, цвету выхлопных газов и т.д.

Распространенные неисправности дизельного двигателя и диагностика агрегатов данного типа. Проверка топливной системы дизельного мотора, полезные советы.

Что делать, если пропала искра зажигания. Диагностика отдельных элементов: свечи, катушка, модуль зажигания. Как проверить искру на инжекторном моторе.

Неисправности форсунок дизеля, проверка и самостоятельное выявление проблем. Очистка сопла форсунок дизельного двигателя, регулирование давления впрыска.

Самодиагностика двигателя

Во время эксплуатации автомобилей Toyota в России в сложных климатических условиях нередко возникают различные проблемы с двигателем. Это могут быть как серьезные поломки, которые устранить будет достаточно сложно и проще будет установить контрактный двигатель, так и выход из строя каких-либо датчиков. Если у вас загорелся индикатор «Check Engine» не спешите сразу расстраиваться. Для начала необходимо провести простейшую самодиагностику двигателя Toyota. Данная процедура не займет много времени и поможет вам выявить проблемы в двигателе.

Зачем проводить самодиагностику двигателя

При покупке подержанного автомобиля необходимо быть очень внимательным. Часто недобросовестные продавцы скрывают от вас проблемы в двигателе, которые впоследствии придется устранять, тратя на это порой немалые денежные средства. Отличным решением при осмотре такого авто будет диагностика двигателя своими руками, для того чтобы не купить «кота в мешке».

Самодиагностику необходимо проводить и для профилактики автомобиля. При некоторых ошибках индикатор Check Engine может не загораться, хотя неисправность будет присутствовать. Это может грозить повышенным расходом бензина, либо другими проблемами.

Что необходимо сделать перед диагностикой

Перед самодиагностикой двигателя необходимо убедиться, что все индикаторы на приборной панели работают правильно. Лампочки могут не гореть или же быть запитанными от других, что создает видимость их работы. Чтобы избавить себя от лишних действий и ничего не разбирать, можно произвести визуальный осмотр.

Пристегните ремень безопасности, закройте двери (для того, чтобы лишние лампы не отвлекали), вставьте ключ в замок и включите зажигание (двигатель НЕ заводить). Загорятся индикаторы «Check Engine», «ABS», «AirBag», «заряд аккумулятора», «давление масла», «O/D Off» (Если на селекторе АКПП кнопка отжата).

  • лампа «ABS» загорается при включении зажигание и должна тухнуть через 3 секунды;
  • лампа «AirBag» загорается при включении зажигания и тухнет после самодиагностики системы безопасности, примерно через 5 секунд.

Важно: если выключит и включить зажигание, не вынимая ключ из замка, то лампа «AirBag» снова не загорится! Повторная диагностика система произойдет, только если вытащить ключ и вставить снова.

  • если лампа «O/D Off» не горит, нажмите на кнопку на селекторе АКПП, индикатор должен загореться. И наоборот.

Далее заводите двигатель:

  • лампа «Check Engine» при включении зажигания должна гореть постоянно и гаснуть сразу после завода двигателя;
  • аналогично себя ведет и лампа заряда аккумулятора;
  • лампа давления масла загорается при включении зажигания и тухнет через 1-2 секунд после завода двигателя.

Если все указанные индикаторы ведут себя, как было описано выше, значит, приборная панель в полном порядке и можно проводить самодиагностику двигателя. В противном случае сначала необходимо устранить все неполадки с индикаторами.

Как выполнить самодиагностику

Для проведения простой самостоятельной диагностики двигателя тойота понадобиться всего лишь обычная канцелярская скрепка, для того чтобы перемкнуть необходимые контакты.

Расположение диагностического разъема DLC1 в автомобиле.

Расположение диагностического разъема DLC3 в автомобиле.

Как считать коды ошибок

После замыкания указанных контактов, садимся в автомобиль и включаем зажигание (двигатель заводить НЕ нужно). Коды ошибок можно считать, посчитав количество вспышек индикатора «Check Engine».

При отсутствии ошибок в памяти индикатор будет мигать с периодичностью 0,25 секунд. Если же с двигателем есть какие-либо проблемы лампочка будет мигать по другому.

  • Через каждые 0,5 секунды индикатор будет выдавать сначала десятки, затем, после паузы 1,5 секунды, единицы через 0,5 секунды.
  • Если в памяти содержится более одной ошибки, то пауза между ними будет 2,5 секунды.
  • После того, как система выведет все ошибки, начнется их повтор через 4,5 секунды.

Условные обозначения:

0 — мигание лампочки;

1 — пауза 1,5 секунды;

2 — пауза 2,5 секунды;

3 — пауза 4,5 секунды.

Код выдаваемый системой:

0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 0 3 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 0 3

Расшифровка кода:

Самодиагностика выдает коды ошибки 24 и ошибки 52.

Что в итоге

Расшифровать полученные коды ошибок можно, использовав таблицу кодов неисправностей двигателей тойота. Узнав какие датчики неисправны, вы сможете принять дальнейшее решение: либо устранить причину поломки самостоятельно, либо обратиться в специализированный автосервис.

Справочник

Основная задача впрыска — управление рабочим процессом двигателя. Для этого в состав системы управления входят контроллер СУД, датчики и исполнительные механизмы. По сигналам датчиков контроллер определяет оптимальное количество топлива и момент, когда его необходимо подать в цилиндр, определяет момент, когда необходимо подать искру. Исполнительные механизмы обеспечивают доставку в цилиндр топливовоздушной смеси в нужной пропорции и формирование искры. Наряду с этим существует еще одна, не менее важная задача, решаемая контроллером СУД. Речь идет о диагностике (точнее, о самодиагностике) системы управления.

Что такое “бортовая диагностика”?

Под “бортовой диагностикой” понимается система программно-аппаратных средств (контроллер СУД, датчики, исполнительные механизмы), способная определить и идентифицировать неисправности системы управления двигателем, двигателя, а также возможные причины их возникновения.

Для чего нужна бортовая диагностика?

Бортовая диагностика решает следующие задачи:

— Определение и идентификация ошибок функционирования СУД и самого двигателя, которые приводят:

1) к превышению предельных значений токсичности отработавших газов автомобиля. Данное требование к бортовой диагностике распространяется на все системы управления двигателем, обеспечивающие выполнение норм токсичности “Евро-3”;

2) к ухудшению параметров двигателя (например, снижению мощности и крутящего момента двигателя, увеличению расхода топлива, ухудшению ходовых качеств автомобиля);

3) к выходу из строя двигателя или компонентов системы управления. В качестве примера может служить повреждение каталитического нейтрализатора в случае возникновения пропусков воспламенения.

— Информирование водителя о наличии неисправности включением диагностической лампы. Горящая диагностическая лампа (см. рис. ) не требует от водителя немедленного прекращения движения и остановки двигателя. Водитель предупреждается о том, что бортовая система диагностики зафиксировала неисправность СУД, при этом автомобиль может двигаться самостоятельно в аварийном режиме. В этом случае обязанность водителя — в кратчайшие сроки доставить автомобиль к специалистам по техническому обслуживанию. Мигание диагностической лампы сигнализирует о том, что обнаружена неисправность, которая может привести к серьезным повреждениям других компонентов СУД (например, обнаружены пропуски воспламенения, способные повредить каталитический нейтрализатор).

— Сохранение информации об обнаруженной неисправности. В момент обнаружения неисправности в память ошибок контроллера СУД заносится следующая информация:

1) код ошибки согласно международной классификации;

2) статус-флаги (или признаки), характеризующие состояние неисправности в момент считывания информации с помощью диагностического прибора;

3) Freeze Frame (по-другому — стоп-кадр) — значения особо важных для системы параметров в момент фиксации ошибки (реализовано в контроллерах МР7.0 и М7.9.7).

Коды ошибок и вся сопутствующая им дополнительная информация ощутимо облегчают специалистам поиск и устранение неисправностей в системах управления двигателем.

— Активизация аварийных режимов работы СУД. При обнаружении неисправности для обеспечения приемлемых ходовых качеств автомобиля, для предотвращения выхода из строя других (исправных) компонентов СУД и двигателя, для предотвращения выхода значений токсичности отработавших газов за предельные величины система управления двигателем переходит на аварийные режимы работы. Суть аварийных режимов состоит в том, что при возникновении неисправности в цепи какого-либо датчика контроллер СУД использует для расчетов замещающие значения, хранящиеся в памяти контроллера, вместо реального сигнала датчика. На аварийных режимах автомобиль должен быть способен доехать до сервисных служб. Случается так, что водитель и не подозревает о том, что двигатель работает в аварийном режиме.

— Обеспечение взаимодействия с диагностическим оборудованием. О наличии неисправности система бортовой диагностики сигнализирует зажиганием диагностической лампы. Далее система бортовой диагностики должна обеспечить возможность считывания сохраненной в памяти контроллера диагностической информации с помощью специализированного оборудования. Для этой цели в системе управления двигателем организован последовательный канал передачи информации, в состав которого входят контроллер СУД (в роли приемопередатчика), стандартизированная диагностическая колодка для подключения диагностического оборудования и соединяющий их отрезок провода (К-линия). Для передачи информации используются стандартизированные протоколы. С помощью диагностического оборудования специалисты сервисных служб могут считать из памяти контроллера информацию о выявленных ошибках, о самой системе управления двигателем, выполнить серию проверочных тестов, управляя исполнительными механизмами.

— Облегчение поиска неисправностей СУД и двигателя. Современные системы бортовой диагностики способны идентифицировать около сотни неисправностей СУД. Каждой неисправности присваивается свой код согласно международной классификации. Например, код Р0102 соответствует неисправности “Датчик массового расхода воздуха. Низкий уровень сигнала”. В данном случае код ошибки однозначно указывает на компонент СУД, сигнал которого считается ложным, но не определяет причину возникшей неисправности: это может быть и неисправный датчик, и короткое замыкание цепей (или их обрыв), и неисправность самого контроллера. Существуют коды ошибок, которые указывают на неисправности не в конкретном датчике, а в целой подсистеме СУД. Примером могут служить коды Р0301—Р0304 “Пропуски воспламенения в 1—4-м цилиндрах”. Причинами возникновения этих кодов могут быть как неисправности электрических компонентов СУД (модуля или катушки зажигания, свечей, высоковольтных проводов, форсунок), так и механические неисправности двигателя, следствием которых является неравномерное вращение коленвала (например, из-за снижения компрессии в одном из цилиндров). Существуют неисправности, по которым коды ошибок не фиксируются вообще, но которые влияют на ходовые качества автомобиля. В любом из вышеприведенных случаев, чтобы однозначно определить причину неисправности, требуется провести серию проверок с помощью диагностического оборудования (например, контроль текущих параметров двигателя или выполнение тестов исполнительных механизмов). Правильное использование всего объема информации, которую выдает система бортовой диагностики, позволяет максимально сократить время на поиск неисправности.

Как работает бортовая диагностика?

Основным компонентом системы бортовой диагностики является контроллер СУД. Он постоянно держит под наблюдением сигналы всех датчиков системы управления, а также некоторые важные параметры работы двигателя. Эти сигналы сравниваются с контрольными значениями, которые хранятся в памяти контроллера. Если какой-либо сигнал выходит за пределы контрольных значений (например, напряжение датчика стало равным нулю — короткое замыкание на “массу”), контроллер квалифицирует это состояние как неисправность, формирует и записывает в память ошибок соответствующую диагностическую информацию, активизирует алгоритм управления диагностической лампой, а также обеспечивает переход на аварийные режимы работы СУД.

Система бортовой диагностики начинает функционировать с момента включения зажигания (клемма 15) и прекращает функционировать после перехода контроллера СУД в режим “stand by”. Момент активизации того или иного алгоритма диагностики и его работа могут ограничиваться определенными режимами работы двигателя.

Диагностические алгоритмы, заложенные в контроллер, могут быть разделены на три группы.

1. Диагностика датчиков СУД.

Датчики СУД контролируются на обрыв, замыкание сигнальной цепи на “массу” или источник питания. Для некоторых датчиков реализована проверка выходного сигнала на достоверность. В этом случае контроллер отслеживает, чтобы величина сигнала датчика находилась в допустимом, ожидаемом диапазоне.

2. Диагностика исполнительных механизмов СУД (драйверная диагностика выходных каскадов контроллера). Исполнительные механизмы СУД контролируются на обрыв, замыкание на “массу” или источник питания цепей управления. 3. Диагностика подсистем СУД (функциональная диагностика).

В системе управления двигателем можно выделить несколько подсистем:

  • подсистема зажигания;
  • подсистема топливоподачи;
  • подсистема поддержания холостого хода;
  • подсистема нейтрализации отработавших газов;
  • подсистема улавливания паров бензина и другие.

Каждая из них выполняет свою конкретную задачу. К каждой подсистеме предъявляются требования по величине предельно допустимых отклонений ее параметров от средних значений. В данном случае система бортовой диагностики следит уже не за отдельно взятыми датчиками и исполнительными механизмами, а за параметрами, которые характеризуют работу всей подсистемы в целом. Например, о качестве работы подсистемы зажигания можно судить по наличию пропусков воспламенения в камерах сгорания двигателя. Параметры адаптации топливоподачи дают информацию о состоянии подсистемы топливоподачи и так далее. Функциональная диагностика дает заключение о качестве работы подсистем СУД в целом.

Статья Самодиагностика системы управления двигателем и Впрыск топлива и

Еще статьи по теме Впрыск топлива и история возникновения систем управления двигателем кратко. Что такое впрыск? Впрыск от английского “injection” сегодня комплексная система управления, обеспечивающая оптимальный режим работы двигателя с целью снижения токсичности отработавших газов, повышения мощности и экономичности двигателя. В системе управления двигателем можно выделить. Впрыск топлива и история

Статья Самодиагностика системы управления двигателем и Основные принципы

Еще статьи по теме Основные принципы работы инжекторного двигателя кратко. Такты и порядок работы Наибольшее применение автомобилестроении нашел так называемый двигатель Отто двигатель внутреннего сгорания с принудительным зажиганием, котором энергия, выделяемая сгорании топлива, превращается механическую энергию поступательного движения поршня. В этом. Основные принципы работы

Статья Самодиагностика системы управления двигателем и Система питания

Еще статьи по теме Система питания впрыскового двигателя кратко. Топливная система Топливная система автомобилей с электронным впрыском имеет ряд особенностей по сравнению с системой карбюраторного двигателя: топливо бака подается под высоким давлением образование топливовоздушной смеси происходит во впускной трубе непосредственно перед впускным. Система питания впрыскового

Статья Самодиагностика системы управления двигателем и Электронная

Еще статьи по теме Электронная система зажигания кратко. Чтобы воспламенить топливовоздушную смесь, нужный момент цилиндр должна быть подана электрическая искра. Эту задачу выполняет электронная система зажигания, которая является составной частью системы управления двигателем. Электронная система зажигания имеет ряд существенных отличий от. Электронная система

Статья Самодиагностика системы управления двигателем и Датчики системы

Еще статьи по теме Датчики системы управления двигателем кратко. Датчики системы управления двигателем позволяют контроллеру определять, что происходит с двигателем и автомобилем целом конкретный момент времени. По сигналам датчикоконтроллер производит сложные расчеты, после чего выдает управляющие сигналы на исполнительные механизмы Датчик положения. Датчики системы управления

Статья Самодиагностика системы управления двигателем и Системы,

Еще статьи по теме Системы, соответствующие экологическим нормам “Евро-2” и “Евро-3” кратко. Датчик неровной дороги Датчик неровной дороги ДНД, рис. 1 является единственным датчиком системе, который не оказывает прямого влияния на процесс управления двигателем. Он выполняет чисто защитную функцию: по сигналу этого датчика контроллер может на время прерывать распознавание пропусков. Системы, соответствующие

Статья Самодиагностика системы управления двигателем и Контроллер

Еще статьи по теме Контроллер системы управления двигателем кратко. Главная часть системы впрыска контроллер системы управления двигателем. Его иногда еще называют “мозгами”, как бы подчеркивая важность той работы, которую он выполняет. Контроллер от английского control “управление” является коммуникационным и вычислительным центром системы зависимости. Контроллер системы

Статья Самодиагностика системы управления двигателем и Самодиагностика

Еще статьи по теме Самодиагностика системы управления двигателем кратко. Основная задача впрыска управление рабочим процессом двигателя. Для этого состасистемы управления входят контроллер СУД, датчики и исполнительные механизмы. По сигналам датчикоконтроллер определяет оптимальное количество топлива и момент, когда его необходимо подать цилиндр, определяет. Самодиагностика системы

Статья Самодиагностика системы управления двигателем и Исправное и

Еще статьи по теме Исправное и неисправное состояние системы управления двигателем кратко. Изучая работу системы управления двигателем СУД мы рассматривали исправное состояние каждого компонента, входящего состасистемы управления, а исправное состояние самого двигателя. Другими словами, идеализированную модель системы, и нам было важно разобраться с основными принципами. Исправное и неисправное

Статья Самодиагностика системы управления двигателем и Оборудование для

Еще статьи по теме Оборудование для диагностики впрыска кратко. Одной важнейших задач бортовой диагностики системы управления двигателем является обеспечение связи с диагностическим оборудованием. О наличии неисправности работе системы контроллер информирует водителя с помощью диагностической лампы. Далее система бортовой диагностики должна. Оборудование для диагностики

Статья Самодиагностика системы управления двигателем и Датчик

Еще статьи по теме Датчик кислорода кратко. Прелести автомобилизации бесспорны, как и связанные с этим глобальным явлением проблемы. В отработавших газах бензинового двигателя можно найти немало разнообразных токсичных компонентов, но верховодит традиционная триада: СО – окись углерода, угарный газ СН – несгоревшие углеводороды NOх. Датчик

Самодиагностика авто при помощи педалей — какие поломки можно определить

Визуальное считывание кодов ошибок микропроцессорной системы управления двигателем

Почти каждый автомобиль, оснащенный электронной системой управления двигателем, также имеет еще и систему самодиагностики. В случае, если какой-либо из датчиков выдает на компьютер показания, отличные от предусмотренных основной программой — запускается аварийная, при этом на приборном табло автомобиля загорается контрольная лампочка сигнализации о возникшей неисправности «CHECK ENGINE» («CHECK» или с изображением двигателя). Однако, когда показания от этого датчика вернутся в пределы, предусмотренные основной программой, — компьютер задействует основную программу и двигатель начнет работать в обычном (штатном) режиме. В этот момент лампочка «CHECK ENGINE» — гаснет, но не смотря на это в память компьютера будет занесен код возникшей неисправности. Эта система очень удобна для диагностики случайных сбоев в работе двигателя. Прочитать коды неисправностей, записанные в память, можно как с помощью компьютера, так и непосредственно с помощью контрольной лампы «CHECK ENGINE».
Для того, чтобы с помощью контрольной лампы «CHECK ENGINE» просмотреть коды ошибок, зафиксированные в памяти системы управления японских автомобилей, — необходимо с помощью перемычки замкнуть между собой контакты «Е1» и «ТЕ1» диагностического разъема. Маркировка выводов разъема обычно нанесена на его корпус.

Для того, чтобы с помощью контрольной лампы считать коды, зафиксированные контроллером типа ITMS-6F (устанавливается на автомобили ВАЗ-21213) — необходимо замкнуть между собой контакты «A» и «B», а после этого включить зажигание.

В случае, если по какой-либо причине невозможно определить назначение контактов в колодке диагностического разъема, автор книги «Ремонт японских автомобилей (Записки автослесаря)» Корниенко С.В. (Москва, 2004, Изд-во «АСТ») предлагает воспользоваться пробником (лампочка на 12 вольт с присоединенными к ней проводниками), замкнув один провод на корпус автомобиля, а вторым по очереди касаться всех «бесхозных» разъемов. Когда вы попадете на «ТЕ1», то при включенном зажигании лампочка на щитке приборов с изображением двигателя погаснет и начнет выдавать код записанной неисправности. При перемыкании выводов «E1» и «ТЕ1» выключается режим диагностики не только блока ER, но и некоторых других блоков.

Использование лампы на 12 В позволит вам избежать короткого замыкания в силовых цепях электрической сети автомобиля. Также, следует отметить, что контрольная лампа не обязана загораться при касании контакта «ТЕ1», бывает достаточно всего лишь понизить уровень потенциала (напряжения) на нем, что бы блок диагностики перешел в режим индикации зафиксированных неисправностей.

Считывание кодов ошибок производится после установки вышеуказанной перемычки и включения зажигания, путем визуального фиксирования количества вспышек контрольной лампы «CHECK ENGINE» (находится на приборной панели автомобиля). Имейте ввиду, что у разных автомобилей диагностический разъем может находиться как в моторном отсеке, так и в салоне автомобиля.

Каждый код система управления повторяет три раза, после чего переходит к отображению следующего кода. Код «12» система самодиагностики отображает следующим образом: сначала происходит одна (1) вспышка лампы «CHECK ENGINE», затем — пауза, далее — две вспышки (1+1=2) разделенные более короткой паузой, после этого следует длинная пауза, а далее данный диагностический код повторяется еще два раза — аналогичным образом.

Код «12» — это всего лишь код начала диагностики, который означает лишь то, что система диагностики функционирует, однако если он не индицируется — это свидетельствует о неисправности системы самодиагностики, которую следует устранить. Несколько сложнее произвести считывание кодов ошибок на автомобилях , так как контроллер располагается в труднодоступном месте (под креслом переднего пассажира либо в районе передней стойки со стороны пассажира), а считывание кодов осуществляется по светодиодам, размещенным на самом блоке контроллера.

Для того, что бы более полно описать процесс считывания диагностических кодов на автомобилях ниже приведен фрагмент из книги «Ремонт японских автомобилей (Записки автослесаря)» (Автор: Корниенко С.В. Москва, 2004, Изд-во «АСТ»): «… В автомобилях для того, чтобы опросить память блока EFI, его надо сначала «добыть». Он будет находиться с левой стороны, под сиденьем пассажира, или в левой передней стойке. В металлическом корпусе самого блока есть отверстие, через которое видны два светодиода: красный и зеленый. Рядом есть ручка (под отвертку), которой выбирают режим проверки. Алгоритмы всех операций у разных моделей машин несколько отличаются друг от друга, но смысл и коды в общем-то одинаковы.

Перед началом диагностики надо убедиться, что ручка выбора режима повернута до упора против часовой стрелки. Теперь процедура диагностики, рекомендуемая для ранних моделей автомобилей с двигателем серии «СА». Включите зажигание. Убедитесь, что оба диода светятся, если нет, значит, где-то обрыв питания. С помощью плоской отвертки поверните ручку выбора режима по часовой стрелке до упора. По очереди должны высветиться коды 23, 24, 31. Если появятся еще какие-нибудь коды, запишите их. Красный светодиод обозначает десятки, зеленый — единицы. Код 23, например, выглядит так: два раза моргнул красный светодиод, потом три раза — зеленый. Потом пауза, и выводится код 24, снова пауза — и код 31. Затем, если в машине все исправно, следует длинная пауза и снова те же коды 23, 24, 31 и так далее, до бесконечности. Нажмите и отпустите педаль газа. Должны появиться коды 24 и 31. Если появится еще какой-нибудь код, запишите его. Запустите двигатель. Должны появиться коды 24 и 31 но не обязательно, может остаться только код 31. Если появится еще какой-нибудь код, запишите его. Включите-выключите кондиционер. Должны появиться коды 44 и 24, или только код 44. Другие коды запишите. Выключите двигатель. Стирание памяти производится при включенном зажигании и при повороте ручки от упора до упора, с выдержкой в крайних положениях не менее 2-х секунд. Снятие аккумулятора может очистить память далеко не сразу. Блок EFI у «Nissan» около суток все помнит и без аккумулятора. Но не у всех двигателей этой фирмы диагностика такая простая. Например, у двигателя VG 30Е процедура самодиагностики гораздо сложнее. Там те же два светодиода и та же ручка, но действовать надо по-другому.

Порядок диагностики:

1.Убедитесь, что селектор выбора режима повернут против часовой стрелки до упора.

3.Поверните селектор выбора режима по часовой стрелке до упора.

После этого должны вспыхнуть один раз одновременно оба светодиода, затем — длинная пауза. Если вы за это время повернете селектор выбора режима обратно против часовой стрелки, установится режим 1, если этого не сделать, через несколько секунд светодиоды вспыхнут два раза подряд, и опять будет пауза, в течение которой вы можете установить, повернув селектор, режим 2. После паузы следуют три вспышки подряд, снова пауза и четыре вспышки, потом пауза и пять вспышек, и все повторится сначала: одна вспышка — пауза -две вспышки — пауза — три вспышки и т.д. Во время паузы вы можете поворотом селектора оставить тот или иной режим, и компьютер будет непрерывно выдавать по очереди все коды, которые в этом режиме у него есть. Если вы не выведете его из этого режима, когда они закончатся, он начнет, после длинной паузы, выдавать их снова с низшего номера кода до верхнего и т.д.

  • Режим 1 — проверка датчиков выхлопных газов.
  • Режим 2 — проверка состава топливной смеси.
  • Режим 3 — самодиагностика (вызов памяти).
  • Режим 4 — проверка различных включателей (холостого хода, стартера и т.д.).
  • Режим 5 — диагностика в настоящий момент (режим реального времени).

Иногда удается увидеть окошко для светодиодов, не снимая блока EFI, но, может быть, придется проделать это, используя зеркальце и лежа на полу в салоне автомобиля….».

В то же время, считать коды неисправностей узлов многих современных автомобилей — возможно только с помощью компьютера, оснащенного специальным адаптером типа K-L-Line (например контроллер Bosh MP7.0) или K-Line.

Также следует отметить, что контролер «Siemens» S113717120 (устанавливался на автомобиль «Святогор») — имеет контрольную лампу «CHECK ENGINE», однако не имеет системы самодиагностики.

Очистить память компьютера от кодов, накопившихся в ней за время эксплуатации автомобиля посредством отключения питания компьютера, например, сняв на 15-30 сек клемму с аккумулятора. Такая выдержка времени перед подключением аккумулятора обусловлена тем, что у компьютеров в цепях питания стоят сглаживающие конденсаторы, от которых компьютер может продолжать функционировать после прекращения внешнего питания на протяжении вышеуказанного времени, а в некоторых компьютерах информация может храниться даже более суток.

Оригинал статьи: https://avto-diagnostika.narod.ru/self_diagnostics.html

Материал с сайта: car-work.ru

Большинство автопроизводителей закладывает в свои авто недокументированные процедуры диагностики электронных компонентов автомобиля, без специального диагностического прибора — т.е. автомобиль обычно можно продиагностировать «подручными» средствами, обычно замыканием перемычки в разъеме диагностики и считыванием кодов неисправностей в виде вспышек лампы MIL (check engine). Ниже, мы постарались выложить процедуры самодиагностики для множества разнообразных автомобилей.

Самодиагностика автомобилей большинства мировых производителей (описание процедуры диагностики без доп. оборудования и расшифровки кодов ошибок) в формате Adobe PDF — скачать по клику ( в разделах подробно описаны процедуры самостоятельной диагностики (самодиагностики) и расшифровки кодов неисправностей конкретного автомобиля — качайте безопасно с нашего сайта.):

Ссылка на основную публикацию