Главная передача и дифференциал автомобиля

Главная передача, дифференциал, полуоси (приводные валы) и ступицы ведущих колес

Главная передача автомобиля представляет собой редуктор, уменьшающий частоту вращения ведущих колес по сравнению с карданным валом. Главная передача, состоящая из одной пары конических шестерен, называется одинарной, а из двух пар шестерен — конической и цилиндрической — двойной.

Одинарная главная передача и дифференциал автомобиля ГАЗ-5ЗА

Одинарная главная передача и дифференциал автомобиля ГАЗ-5ЗА:

1 — фланец вала ведущей шестерни; 2 — вал ведущей шестерни; 3 и 9 — конические роликовые подшипники; 4 — ведущая шестерня; 5 — ведомая шестерня; 6 — сателлит; 7 — шестерня полуоси; 8 и 14 — полуоси; 10 и 11 — чашки коробки дифференциала; 12 — крышка подшипника коробки дифференциала; 13 — картер заднего моста; 15 — картер редуктора; 16 — цилиндрический роликовый подшипник; 17 — стакан подшипников вала ведущей шестерни.

На автомобиле ГАЗ-53А используют одинарную главную передачу. Вал 2 ведущей шестерни 4 установлен на двух конических 3 и одном цилиндрическом 16 роликовых подшипниках. Ведомая шестерня 5 прикреплена к коробке дифференциала, состоящей из двух частей («чашек») 10 и 11, и вместе с ней вращается на конических роликовых подшипниках 9, закрепленных в гнездах картера 15 редуктора крышками 12.

В главной передаче применено гипоидное зацепление шестерен.

Его особенность — оси ведущей и ведомой шестерен не пересекаются, так как ось ведущей шестерни опущена относительно оси ведомой.

Преимущество гипоидной передачи в сравнении с обычной конической
— большая плавность зацепления и бесшумность работы шестерен. Вместе с тем такое зацепление повышает относительную скорость скольжения зубьев шестерен друг по другу, а поэтому требует специальную «гипоидную» смазку. При использовании обычных автомобильных трансмиссионных масел шестерни быстро приходят в негодность.

Двойная гласная передача автомобиля ЗИЛ-130

Двойная гласная передача автомобиля ЗИЛ-130:

1 и 4 — ведущая и ведомая конические шестерни;
2 и 3 — ведущая и ведомая цилиндрические шестерни;
5 — сапун.

Двойная главная передача автомобиля ЗИЛ-130 показана на рисунке.

Ее основные части: ведущая 1 и ведомая 4 конические, ведущая 2 и ведомая 3 цилиндрические шестерни. Вал ведущей конической шестерни установлен в стакане картера редуктора на двух конических роликовых подшипниках, вал ведомой конической и ведущей цилиндрической шестерен также вращается на двух конических роликовых подшипниках.

Ведомая цилиндрическая шестерня прикреплена к коробке дифференциала и вместе с ней установлена на двух роликовых конических подшипниках.

Преимущества двойной главной передачи, применяемой на некоторых грузовых автомобилях, по сравнению с одинарной
— она позволяет при больших передаточных числах несколько уменьшить наружные размеры средней части картера заднего моста и этим повысить дорожный просвет автомобиля (расстояние от его низшей точки до дороги).

Дифференциал дает возможность ведущим колесам вращаться с разной частотой, когда они проводят пути неодинаковой длины, например на поворотах. Дифференциал состоит из коробки 4, в которой установлена крестовина 3. На нее надеты четыре шестерни 1, называемые сателлитами.

Они входят в зацепление с двумя шестернями 2 полуосей 7. Пока оба колеса проходят одинаковые пути, сателлиты, вращаясь вместе с коробкой дифференциала, сообщают обеим шестерням 2 одинаковую частоту вращения, сами же вокруг своих осей не повертываются. Когда же одна из шестерен 2 замедлит движение, сателлиты начинают повертываться вокруг осей крестовины и заставляют другую шестерню 2, соединенную с полуосью 7, вращаться быстрее.

Полуоси связывают дифференциал с ведущими колесами и приводят их в движение. Каждая полуось 7 соединена одним концом с шестерней 2, а другим — со ступицей колеса.

Дифференциал

а — детали; б — схема действия;

1 — сателлиты; 2 — шестерни полуосей (приводных валов); 3 — крестовина; 4 — коробка дифференциала; 5 и 6 — ведомая и ведущая шестерни главной передачи; 7 — полуоси.

Главная передача, дифференциал и полуоси находятся в разъемном картере, вентиляция которого осуществляется через сапун.

Картер представляет собой полую балку, выполняющую функции задней оси автомобиля. Вместе с главной передачей, дифференциалом и полуосями, а также установленными на концах его балки ступицами, колесами и колесными тормозными механизмами картер образует задний мост.

Ступицы колес установлены на балке заднего моста на двух подшипниках каждая. При такой установке полуоси называются полностью разгруженными.

Ступица заднего колеса автомобиля ГАЗ-53А

Ступица заднего колеса автомобиля ГАЗ-53А:

1 — винт крепления тормозного барабана; 2 и 16 — наружный и внутренний подшипники ступицы; 3 — болт-съемник полуоси; 4 — установочный палец; 5 и 6 — гайка и контргайка крепления подшипников; 7 — стопорная шайба; 8 — шпилька крепления полуоси; 9 — колпачковая гайка крепления внутреннего диска колеса; 10 — гайка крепления наружного диска колеса; 11 — ступица колеса; 12 — цилиндр тормоза колеса; 13 — балка заднего моста; 14 — полуось; 15 — сальник.

Главная передача, дифференциал и полуоси автомобиля ГАЗ-51А устроены так же, как и у автомобиля ГАЗ-53А, но зацепление шестерен главной передачи у ГАЗ-51А не гипоидное, а обычное.

Разрез ведущего моста

Разрез ведущего моста автомобилей «Москвич-408» и «Москвич-412»:

1 — фланец; 2 — гайка; 3 и 6 — подшипники ведущего вала; 4 — регулировочные прокладки; 5 — распорная втулка; 7 — ведущая шестерня; 8 — штифт оси сателлитов; 9 — сателлит; 10 — крышка подшипника дифференциала; 11 — коробка дифференциала; 12 — пробка маслоналивного отверстия; 13 — ось сателлитов; 14 — ведомая шестерня; 15 — болт крепления шестерни; 16 — болт стопора; 17 — стопор регулировочной гайки; 18 — картер заднего моста; 19 — кронштейн трубопроводов гидравлического привода тормозов; 20 — трубопровод гидравлического привода тормозов; 21 — подушка (площадка) рессоры; 22 — стопорная втулка подшипника полуоси; 23 — резиновый сальник; 24 — колпачковая масленка; 25 — пластина кропления подшипника; 26 — тормозной диск; 27 — войлочный сальник; 28 — упорная втулка; 29 — тормозной барабан; 30 — цилиндр тормоза колеса; 31 — клапан выпуска воздуха; 32 — болт крепления тормозного механизма и подшипника полуоси; 33 — подшипник полуоси; 34 — упорная шайба; 35 — наконечник картера с гнездом для подшипника полуоси; 36 — полуось; 37 — болт картера редуктора; 38 — регулировочная гайка; 39 — подшипник коробки дифференциала; 40 — шестерня полуоси.

Читайте также:  Зеленая карта для поездки в Польшу на авто в 2022 году

Устройство главной передачи, дифференциала и полуосей автомобиля «Москвич-412» показано на рисунке. Главная передача одинарная, с гипоидным зацеплением шестерен 7 и 14. Дифференциал имеет только два сателлита 9, установленных на оси 13, закрепленной в неразборной коробке 11 дифференциала.

Полуоси 36 фланцевые, полуразгруженные. Наружный конец каждой полуоси установлен на шариковом подшипнике 33 в гнезде стального наконечника 35, приваренного к картеру заднего моста. Шлицами внутренний конец полуоси соединен с шестерней 40, установленной в коробке дифференциала.

Полуось удерживается в гнезде картера стальной пластиной 25, прижимающей наружное кольцо подшипника 33. Пластину вместе с тормозным диском 26 крепят к торцу фланца наконечника картера моста четырьмя болтами 32.

«Автомобиль», под. ред. И.П.Плеханова

Основные неисправности — это шум в главной передаче, дифференциале и ступицах при движении автомобиля и утечка масла из картера заднего моста. Шум возникает из-за нарушения регулировки зацепления шестерен или затяжки подшипников, ослабления крепления и износа деталей и шестерен. Изношенные детали и шестерни заменяют новыми. Нарушенные зацепление шестерен и затяжку подшипников устраняют регулировкой. Утечка масла чаще…

Принцип работы и конструкция главной передачи автомобиля

Главная передача автомобиля — это трансмиссионный элемент, в наиболее распространенном варианте, состоящий из ведомой и ведущей шестерен, служащий для преобразования крутящего момента от коробки передач, и передачи его на ведущий мост. Тягово-скоростные характеристики автомобиля и расход топлива напрямую зависят от конструкции главной передачи. Рассмотрим устройство, принцип работы, виды и требования к механизму трансмиссии.

  1. Работа главной передачи
  2. Конструкция и характеристики главной передачи
  3. Виды главной передачи
  4. По количеству пар зацеплений
  5. По виду зубчатого соединения
  6. По компоновке
  7. Плюсы и минусы

Работа главной передачи

Принцип работы главной передачи достаточно прост: пока автомобиль находится в движении, крутящий момент двигателю передается от коробки передач, затем с помощью главной передачи и дифференциала на ведущие мосты автомобиля. Таким образом, главная передача напрямую изменяет крутящий момент, который передается на колеса автомобиля. В результате меняется и скорость вращения колес.

Главная особенность этой редуктора — передаточное число. Этот параметр отражает соотношение между количеством зубьев ведомой шестерни (соединенной с колесами) и ведущей (соединенного с вторичным валом коробки передач). Чем выше передаточное число, тем быстрее автомобиль разгоняется (увеличивается крутящий момент), но в то же время значение максимальной скорости значительно уменьшается. Уменьшение передаточного числа увеличивает скорость, но автомобиль начинает разгоняться медленнее. Для каждой модели автомобиля передаточное число подбирается с учетом характеристик двигателя, трансмиссии, размера колес, тормозной системы и т. д.

Конструкция и характеристики главной передачи

Конструкция рассматриваемого механизма проста: главная передача состоит из двух шестерен (зубчатый редуктор). Шестерня меньше по размеру и соединена с выходным валом коробки передач. Ведомая шестерня больше ведущей шестерни и соединена с дифференциалом и колесами автомобиля.

Какими основными характеристиками должна обладать главная передача:

  • минимальный уровень шума и вибраций при работе;
  • минимальный расход топлива;
  • большой КПД;
  • обеспечение высоких тягово-динамических характеристик;
  • технологичность;
  • минимальные габаритные размеры;
  • минимальная масса;
  • высокая надежность;
  • минимальная необходимость в обслуживании.

Эффективность главной передачи можно повысить за счет улучшения качества зубьев обеих шестерен, а также за счет увеличения жесткости деталей и использования подшипников качения в конструкции.

Обратите внимание, что особенно для легковых автомобилей в зубчатых редукторах требуется минимизация вибрации и шума во время работы.

Вибрацию и шум можно минимизировать, обеспечив надежную смазку зубьев, повысив точность зацепления, увеличив диаметр вала и увеличив жесткость элементов механизма.

Виды главной передачи

По количеству пар зацеплений

  • Одинарная – имеет в составе лишь одну несколько шестерен: ведомую и ведущую.
  • Двойная – имеет в составе две пары шестеренок. Делится на двойную центральную или двойную разнесенную. Двойная центральная находится лишь в ведущем мосту, а двойная разнесенная еще и в ступице ведущих колес. Используется на грузовом транспорте, поскольку на нем требуется повышенное передаточное число.

По виду зубчатого соединения

  • Цилиндрическая. Используется на переднеприводных автомобилях, в которых двигатель и коробка передач расположены поперечно. В этом типе соединения используются шевронные и косозубые шестерни.
  • Коническая. Применяется в автомобилях с задним приводом, где габариты механизмов не важны и нет ограничений по уровню шума.
  • Гипоидная. Самый популярный тип зубчатого соединения для автомобилей с задним приводом.
  • Червячная. В конструкции машины трансмиссия особо не используется.

По компоновке

  • Размещается в коробке передач или силовом агрегате. На переднеприводных автомобилях главная передача находится непосредственно в коробке передач.
  • Находится отдельно от КПП. В автомобилях с задним приводом главная пара шестерен расположена в картере ведущего моста вместе с дифференциалом.

Напомним, в полноприводных автомобилях положение главной пары шестерен зависит от типа привода.

Плюсы и минусы

У каждого типа зубчатых соединений есть свои достоинства и недостатки.

  • Цилиндрическая главная передача. Максимальное передаточное число ограничено до 4,2. Дальнейшее увеличение соотношения количества зубьев приводит к значительному увеличению размеров механизма и увеличению уровня шума.
  • Главная передача гипоидная. Этот тип имеет низкую нагрузку на зубья и низкий уровень шума. Наряду с этим из-за смещения в зацеплении шестерен увеличивается трение скольжения и снижается КПД, но при этом появляется возможность максимально опустить карданный вал. Передаточное число легковых автомобилей — 3,5-4,5; для грузовых — 5-7;
  • Коническая главная передача. Она редко используется из-за огромных размеров и шума.
  • Червячная главная передача. Фактически, этот тип зубчатого соединения не используется из-за трудоемкости изготовления и высокой стоимости.

Главная передача – это важная часть трансмиссии, от которой зависит расход топлива, большая скорость и время разгона автомобили. Поэтому исходя из этого при тюнинге трансмиссии несколько шестеренок часто меняют на модернизированный вариант. Это помогает снизить нагрузку на КПП и сцепление, и улучшить разгонную динамику.

Справочник

Главная передача автомобиля предназначена для увеличения крутящего момента и передачи его на полуоси колес под углом 90 0

Читайте также:  Статья 119 УК РФ «Угроза убийством или причинением тяжкого вреда здоровью» за угрозы по телефону

Главная передача состоит из:

  • ведущей шестерни,
  • ведомой шестерни.

Крутящий момент от коленчатого вала двигателя через сцепление, коробку передач и карданную передачу передается на пару косозубых шестерен, которые находятся в постоянном зацеплении.
На рисунке оба колеса будут вращаться с одинаковой угловой скоростью. Но ведь в этом случае поворот автомобиля невозможен, так как колеса должны пройти неодинаковое расстояние при этом маневре!
Если взять игрушечную машинку, у которой задние колеса связаны между собой жесткой осью, и немного покатать ее по полу, то паркет в вашем доме может заметно пострадать. При каждом повороте автомобильчика, одно из его колес обязательно будет проскальзывать, и оставлять за собой черный след.

Давайте посмотрим на следы, оставленные на повороте мокрыми колесами любого реального автомобиля. Рассматривая эти следы заинтересованно, можно увидеть, что внешнее от центра поворота колесо проходит путь значительно больший, чем внутреннее.
Если бы каждому колесу передавалось одинаковое количество оборотов, то поворот автомобиля, без черных следов на «паркете», был бы невозможен. Следовательно, настоящий автомобиль, в отличие от игрушечного, имеет некий механизм, позволяющий ему делать повороты без «черчения» резиной колес по асфальту. И этот механизм называется – дифференциалом.

Дифференциал предназначен для распределения крутящего момента между полуосями ведущих колес при повороте автомобиля и при движении по неровностям дороги. Дифференциал позволяет колесам вращаться с разной угловой скоростью и проходить неодинаковый путь без проскальзывания относительно покрытия дороги.
Иными словами 100% крутящего момента, который приходит на дифференциал, могут распределяться между ведущими колесами как 50 х 50, так и в другой пропорции (например, 60 х 40). К сожалению, пропорция может быть и 100 х 0. Это означает, что одно из колес стоит на месте (в яме), а другое в это время буксует (по сырой земле, глине, снегу).
Что поделаешь! Ничто не бывает абсолютно правильным и идеальным, зато данная конструкция позволяет автомобилю поворачивать без заноса, а водителю не менять каждый день напрочь изношенные шины.

Конструктивно дифференциал выполнен в одном узле вместе с главной передачей и состоит из:

  • двух шестерен полуосей,
  • двух шестерен сателлитов.
Главная передача и дифференциал переднеприводных автомобилей

У переднеприводных автомобилей главная передача и дифференциал расположены в корпусе коробки передач. Двигатель у таких автомобилей расположен не вдоль, а поперек оси движения, значит, изначально крутящий момент от двигателя передается в плоскости вращения колес. Поэтому нет необходимости изменять направление крутящего момента на 90 О , как у заднеприводных автомобилей. Но, функция увеличения крутящего момента и распределения его по осям колес, остается неизменной и в этом случае.

Основные неисправности главной передачи и дифференциала

Шум («вой» главной передачи) при движении на большой скорости возникает из-за износа шестерен, неправильной их регулировке или в случае отсутствия масла в картере главной передачи.
Для устранения неисправности необходимо отрегулировать зацепление шестерен, заменить изношенные детали, восстановить уровень масла.

Подтекание масла может быть через сальники и неплотные соединения.
Для устранения неисправности следует заменить сальники, подтянуть крепления.

Эксплуатация главной передачи и дифференциала

Как и любые шестеренки – шестерни главной передачи и дифференциала требуют «смазки и ласки».
Относительно «ласки». Хотя все детали главной передачи и дифференциала и выглядят массивными «железяками», но они тоже имеют запас прочности. Поэтому рекомендации относительно резких стартов и торможений, грубых включений сцепления и прочей перегрузки машины остаются в силе.

Трущиеся детали и зубья шестерен, в том числе, должны постоянно смазываться – это мы уже знаем. Поэтому в картер заднего моста (у заднеприводных автомобилей) или в картер блока – коробка передач, главная передача, дифференциал (у переднеприводных автомобилей), заливается масло, уровень которого необходимо периодически контролировать.
Масло, в котором работают шестерни, имеет склонность к «утеканию» через неплотности в соединениях и через изношенные маслоудерживающие сальники.

А еще, любой картер должен иметь постоянную связь с атмосферой. Когда в закрытой «наглухо» коробке с шестеренками и маслом выделяется тепло, что неизбежно при работе механизмов, давление внутри резко увеличивается и тогда масло обязательно найдет какую-нибудь дырочку. Для того чтобы не доливать масло по два раза в день, следует знать о маленькой детальке любого картера – сапуне. Это подпружиненный колпачок, прикрывающий вентиляционное отверстие или трубку. Со временем, он «залипает» и возможна потеря связи картера с атмосферой. При очередной плановой замене масла или ранее, в случае необходимости, проверните колпачки и восстановите работоспособность пружин всех сапунов на агрегатах вашего автомобиля. В результате этой несложной операции, небольшие утечки масла могут прекратиться.

Обычно среднестатистическому водителю трудно разобраться в той гамме звуков, которые издает его «заболевший» автомобиль. Мало обладать хорошим слухом, надо еще и понимать, что означают эти «завывания», «похрустывания» и прочие «поскрипывания», доносящиеся из определенных зон автомобиля.
Однако можно немного сузить район поиска неисправности. При возникновении подозрения на какую-либо неприятность с трансмиссией, поднимите домкратом одно из ведущих колес автомобиля (и обязательно опустите на «козла» – устойчивую подставку). Запустите двигатель и, включив передачу, заставьте вращаться это колесо. Просмотрите на все, что крутится, прослушайте все, что издает подозрительные звуки. Затем поднимите домкратом колесо с другой стороны. При повышенном шуме, вибрациях и подтеканиях масла – начинайте поиск своего мастера, которому с гордостью можете сказать, что проблемы у вашего автомобиля слева, а не справа.

Статья Главная передача и дифференциал и Карданная

Еще статьи по теме Карданная передача заднеприводного автомобиля кратко. Карданная передача заднеприводных автомобилей предназначена для передачи крутящего момента от вторичного вала коробки передач к главной передаче под изменяющимся углом. Карданная передача состоит из: переднего и заднего валов, промежуточной опоры с подшипником, шарнирос вилками и. Карданная передача

Читайте также:  Помощь человеку или убийство: что такое эвтаназия и разрешена ли она в России?

Статья Главная передача и дифференциал и Устройство

Еще статьи по теме Устройство сцепления автомобиля кратко. Трансмиссия служит для передачи крутящего момента от двигателя на ведущие колеса, а для изменения величины крутящего момента и его направления. Агрегаты трансмиссии заднеприводного распределены вдоль всего кузова и передают крутящий момент от двигателя на задние колеса.&nbsp. Устройство сцепления

Статья Главная передача и дифференциал и Блокировки

Еще статьи по теме Блокировки межколесных дифференциалов кратко. Практически каждый, кто когда-либо более или менее всерьез увлекался ездой по бездорожью, наверняка слышал о блокировках. Многие совершенно не представляют, как эти самые блокировки работают, но об их несомненной пользе непролазной грязи знают все. Представляем обзор всех применяющихся в. Блокировки межколесных

Статья Главная передача и дифференциал и Типы

Еще статьи по теме Типы дифференциалов, принцип работы кратко. При движении поворотах и по неровностям дороги колёса ведущей оси проходят путь разной длины. Чтобы шины не проскальзывали по поверхности дороги, колёса должны вращаться с разными скоростями. Дифференциал механизм, позволяющий колёсам ведущей оси вращаться с разными скоростями и. Типы дифференциалов, принцип

Статья Главная передача и дифференциал и Главная передача и

Еще статьи по теме Главная передача и дифференциал кратко. Главная передача предназначена для увеличения крутящего момента и передачи его на полуоси колес под углом 900 Схема работы главной передачи 1 – фланец 2 – вал ведущей шестерни 3 – ведущая шестерня 4 – ведомая шестерня 5 – ведущие задние колеса 6 – полуоси 7 – картер главной. Главная передача и

Статья Главная передача и дифференциал и Устройство

Еще статьи по теме Устройство механической коробки передач кратко. Коробка передач предназначена для изменения по величине и направлению крутящего момента и передачи его от двигателя к ведущим колесам. она обеспечивает длительное разобщение двигателя и ведущих колес, причем на неограниченный срок и без усилий со стороны водителя по сравнению со. Устройство механической

Статья Главная передача и дифференциал и Ремонт и

Еще статьи по теме Ремонт и техническое обслуживание коробки передач кратко. Коробка передач – один самых сложных агрегато. Она дает возможность изменить силу тяги на ведущих колесах машины путем зацепления шестерен с различным числом зубьев. Кроме этого, она обеспечивает задний ход и длительное разобщение двигателя вместе со сцеплением с другими агрегатами. Ремонт и техническое

Статья Главная передача и дифференциал и Разновидности

Еще статьи по теме Разновидности автоматических коробок передач кратко. Условия эксплуатации транспортных средстдиктуют необходимость значительного изменения крутящего момента 6 раз и более на ведущих колесах. При этом желательно автоматическое увеличение момента случае уменьшения скорости из-за ухудшения условий движения и наоборот. Такая зависимость. Разновидности

Статья Главная передача и дифференциал и Вариатор:

Еще статьи по теме Вариатор: устройство и принцип работы кратко. Что такое вариатор? на автомобиле обычный бензиновый или дизельный мотор соединить с колесами напрямую, то такой ездить не сможет. В отличие от паровых и электрических у поршневого двигателя внутреннего сгорания мощность непостоянна – тяговое усилие на валу низких оборотах. Вариатор: устройство и

Статья Главная передача и дифференциал и Устройство

Еще статьи по теме Устройство автоматической коробки передач кратко. Улучшение эксплуатационных качестсовременного привело к значительному усложнению его конструкции. А оснащение автомобилей автоматической трансмиссией позволило резко снизить объем нагрузки, возлагаемой на водителя во время движения, что благоприятно отразилось на ходовой. Устройство автоматической

Статья Главная передача и дифференциал и АКПП –

Еще статьи по теме АКПП – автоматическая коробка переключения передач кратко. Что означают символы положения рычага выбора диапазона и зачем они нужны? Рычаг выбора диапазона РВД работы коробки передач имеет несколько положений, которые имеют буквенное и цифровое обозначение. Количество этих положений у разных моделей автомобилей разные, но на всех х РВД. АКПП – автоматическая коробка

Автомобильный справочник

для настоящих любителей техники

Главная передача

Суммарное передаточное число трансмиссии обеспечивают следующие элементы: коробка передач с несколькими постоянными пере­даточными числами (автоматическая или неавтоматическая), дополнительная коробка передач (например, раздаточная коробка полноприводного автомобиля) и главная пе­редача.

Главная передача автомобиля

Между коробкой передач и главной пе­редачей в заднеприводном автомобиле рас­положена карданная передача (однозвенная или с несколькими валами и промежуточ­ными опорами). Универсальные шарниры, шарниры равных угловых скоростей или уп­ругие муфты компенсируют угловые переме­щения валов агрегатов трансмиссии.

В легковых автомобилях главная передача состоит из ведущего и ведомого зубчатых колес — гипоидных (при продольном расположении двигателя) или цилиндрических (при поперечном расположении двигателя). (рис. «Главная передача заднего моста легкового автомобиля» ) Главная передача может быть конструктивно объединена с дифференциалом (на автомо­билях с приводом на задние колеса и полным приводом) или с дифференциалом и короб­кой передач (на переднеприводных автомо­билях).

Основными элементами главной передачи и дифференциала являются ведущая и ведо­мая шестерни, планетарная передача, под­шипники, полуоси, фланцы полуосей и кар­тер дифференциала. Передаточное число главной передачи обычно находится в диапа­зоне между 2,6:1 и 4,5:1.

Ведомая шестерня главной передачи обычно крепится болтами к картеру диф­ференциала. Также в картере располагаются планетарная передача и ведомая шестерня, выполненная заодно с валом, установлен­ным на двух конических роликовых подшипниках. Для уменьшения шума главная передача прикрепляется к раме транспорт­ного средства посредством упругих (рези­новых) опор.

Кроме крутящего момента, механиче­ского к.п.д. и массы, решающим критерием при современном производстве автомоби­лей становится уровень шума, вызываемого главной передачей. Бесшумность механизма, главным образом, зависит от способа производства ведущей и ведомой шестерен. Для снижения шума, помимо стандартной технологии изготовления шестерен, могут применяться методы финишной тепловой обработки зубьев (закалка с поверхностным упрочнением). Благодаря этому устраня­ются неточности обработки (с получением максимально возможного соответствия ме­жду расчетной топографией профиля зуба и действительной геометрией, нарезаемой на станке). Подробнее о конструкции ведущих мостов можно почитать здесь.

Главная передача на грузовых автомобилях

На грузовых автомобилях обычно исполь­зуются главные передачи с коническими ги­поидными зубчатыми шестернями. Переда­точное отношение главной передачи обычно изменяется в диапазоне от 3:1 до 6:1. На автомобилях, для которых большое значе­ние имеют характеристики плавности хода, например, на автобусах, шестерни главной передачи изготавливаются со шлифован­ными зубьями.

Читайте также:  Выбор автомобильного аккумулятора: особенности и советы

На городских автобусах (см. рис. «Главная передача автобуса (ZF AV132)» ), которые в настоя­щее время, как правило, имеют конструкцию с низким расположением пола, используется разнесенная главная передача с цилиндриче­скими бортовыми редукторами.

Для увеличения дорожного просвета (например, у транспортных средств, ис­пользуемых на строительных площад­ках), применяются разнесенные главные передачи с планетарными бортовыми редукторами (см. рис. «Разнесенная главная передача с планетарными колесными редукторами» ). Они позволяют умень­шить размеры главной передачи и валов полуосей.

Дифференциал в автомобиле

Дифференциал служит для распределения крутящего мо­мента между колесами или мостами и позво­ляет ведомым валам вращаться с неодинако­выми угловыми скоростями.

За редким исключением, дифференциал состоит из конических зубчатых колес. (см. рис. «Принципиальная схема дифференциала» ) Если шестерни слева и справа — одинаковых раз­меров, дифференциал осуществляет равное распределение крутящего момента на левое и правое колеса. При различных коэффици­ентах сцепления левых и правых шин с до­рожным покрытием сохраняется равенство моментов на левой и правой шине. При этом шина с меньшим коэффициентом сцепле­ния начинает буксовать.

Подробнее о межколесных дифференциалах можно почитать здесь.

Дифференциал повышенного трения (LSD)

Дифференциал повышенного трения (LSD) позволяет устранить этот нежелатель­ный эффект посредством использования фрикционных дисков, фрикционных кону­сов, самоблокирующихся зубчатых передач или многодисковых муфт, находящихся в высоковязкой жидкостной среде.

Дифференциал повышенного трения может иметь электронное управление для работы в широком диапазоне эксплуатационных условий. Высокий коэффициент блокировки, характерный при трогании ав­томобиля с места, может уменьшаться при возрастании частоты вращения или при до­стижении предельной величины силы тяги. Включаемая водителем блокировка диффе­ренциала может использоваться при специфических условиях движения (например, во время движения по бездорожью).

Самоблокирующиеся дифференциалы, в которых автоматически действует уст­ройство, препятствующее относительному вращению ведомых звеньев, постепенно вытесняются электронными системами, на­пример, системой контроля тягового усилия (TCS). Такая система обеспечивает замед­ление проворачивания колеса посредством использования тормоза — когда мощность продолжает передаваться от трансмиссии к притормаживаемому колесу.

Главная передача на полноприводном автомобиле

Компоновочная схема с приводом на все колеса улучшает тяговое усилие легковых автомобилей, внедорожных транспортных средств и грузовых автомобилей на мокрых и скользких дорожных покрытиях и неров­ной местности.

У автомобиля с постоянным полным при­водом и распределением крутящего момента поровну между ведущими осями использу­ется конический дифференциал или плане­тарный механизм. Распределение крутящего момента изменяется с помощью автоматиче­ских или управляемых дифференциалов по­вышенного трения.

Управление полным приводом (с жест­ким приводом на передний и задний мосты, вязкостной муфтой или раздаточной коробкой) включает блокировку дифференциала в главной передаче и раздаточной коробке (имеющей пониженную передачу для дви­жения на крутых уклонах, при низких ско­ростях и для передачи высоких крутящих моментов).

Вязкостная муфта (герметизированный многодисковый механизм с высоковязкой кремнийорганической жидкостью) либо дифференциал Torsen представляют собой еще одно средство приведения в действие привода на все колеса. Как только предель­ное тяговое усилие на постоянно подключен­ном мосту превышается, муфта, реагируя на увеличение проскальзывания, начинает пе­редавать крутящий момент ко второму веду­щему мосту.

Передача полного привода может осущест­вляться дополнительным узлом в автомати­ческой трансмиссии. Интеграция такого узла (рис. «Автоматическая трансмиссия легкового автомобиля с интегрированным полным приводом (ZZ 8 HP)» ) позволяет уменьшить объем зани­маемого пространства, стоимость и массу трансмиссии.

На более поздних автомобилях стали применяться дополнительные блокировки дифференциала в раздаточной коробке, осуществляемые в соответствии с интеллекту­ально контролируемым функционированием тормозов.

Подробнее о полноприводных автомобилях можно почитать здесь.

Фары будущего уже сегодня

Инновации в автомобильной промышленности не знают границ. В дополнение к всевозможным решениям по впрыску и нейтрализации выхлопов, появляются передовые стилистические нововведения, которые привносят в автомобиль все больше и больше футуристических линий и снижают потребление им энергии. Результат исследований и разработок в области новых систем автомобильного освещения представляет собой серию энергоэффективных и мощных, простых и изысканных технологий, способствующих комфорту и безопасности дорожного движения.

Казалось бы, светодиодные автомобильные лампы, имея хорошие технические характеристики, только входят на рынок, заменяя собой галогенные и лампы накаливания. Но, хотя светодиоды все еще устанавливаются на автомобилях крупных производителей (таких, как Audi и Mercedes), ими уже предпринимаются попытки поиска новых решений для достижения дальнейшего прогресса в области автомобильного освещения. Действительно, светодиодные лампы для автомобиля не требуют обслуживания, имеют практически бесконечный срок эксплуатации, не перегорают и не тускнеют со временем. Фары с LED лампами имеют “динамический” свет, управляемый программным обеспечением, которое определяет его интенсивность и форму.

Лазер, однако, способен испускать в тысячу раз более интенсивный луч света по сравнению с Led. Лазерные лучи производят луч света около 170 люмен на Вт, по сравнению со 100 люменами на Вт по светодиодной технологии. Кроме того, лазерный луч монохроматический, т.е. состоит из излучения одной длины волны. Он может обеспечить пучок параллельных лучей света высокой яркости. Лазерное излучение преобразуется с помощью люминофора из рассеянного пучка без потерь и с более светлым оттенком. В результате свет получается более белый, яркий и очень приятный для глаз. Это повышает видимость и обеспечивает большую безопасность на дороге. Кроме того, если светодиодные автомобильные лампы дают значительную экономию энергии по сравнению с традиционными лампами или ксеноновыми фарами, лазерный свет обеспечивает еще более низкое потребление энергии и, следовательно, топлива. Новшество лазерных лучей также имеет большое значение для задних фонарей, особенно для противотуманных фар. Audi разрабатывает решения лазерных противотуманных фар для следующего TT. Конусы света будут образовываться лишь в тот момент, когда луч будет контактировать с паром. Таким образом, при отсутствии тумана лампы не доставят дискомфорта транспортным средствам, движущимся сзади (как это часто происходит сейчас), но будут прекрасно видны в условиях тумана.

Читайте также:  Список документов для регистрации машины в ГИБДД

Тот факт, что лазерные диоды гораздо меньше, чем светодиоды, открывает целый спектр новых возможностей для их установки на автомобилях будущего, которые будут иметь еще более футуристические линии кузова. Светодиодные лампы ближнего и дальнего света и Led ходовые огни, безусловно, более энергоэффективны в сравнении с предыдущими поколениями автомобильных фар и являются новым словом в автомобильном освещении, но технологические инновации в отрасли развиваются быстрыми темпами, и уже тестируются новые решения, которые станут массовыми в ближайшем будущем.

OLED задние фары: зрелость рынка на горизонте

В прошлом году, Osram представил образец OLED (OLED — органические светоизлучающие диоды) на ярмарке электроники. В этом году компания представила преемника на международном симпозиуме по Автомобильному освещению, который теперь соответствует требованиям и стандартам дорожного движения, определенных в Международной Европейской экономической комиссии (ЕЭК), причем, не только для задних ходовых огней, но и для стоп-сигналов. Кроме того, можно разделить однородную область света на динамично контролируемые сегменты, тем самым создавая различные сценарии освещения, например, при нажатии на дверной замок дистанционного управления. Новые OLED для фонарей заднего света – это подтверждение того, что OSRAM во многом достигли пригодности для дорог в этом году. Ожидается, что начиная с 2016 года, органические светодиоды будут рассматриваться как серийные продукты на дорогах.

MatrixLED: еще более умные фары

Advanced Forward Lighting Systems (AFS) – это система освещения, подразумевающая свет фар, который следует за ходом дороги; применяется в большей степени в автомобилях премиум-класса. Благодаря светодиодной технологии, эту функциональность, а также новые функции, такие как безбликовый дальний свет или разметочный цвет могут быть применены проще, чем раньше, потому что, в основном, больше не нужно механическое управление движением фар. Компания Osram предлагает источники света от единичного светодиода для заполнения запускаемых модулей, чтобы позволить производителям автомобилей упростить процесс производства системы AFS. С новым вариантом Ostar Фары Pro, Osram впервые имеет специально разработанный светодиодный компонент для приложений AFS. Пять чипов нового многокристального светодиода могут контролироваться индивидуально и, таким образом, гибко включаться и выключаться в зависимости от дорожной ситуации и позиции других участников дорожного движения. Компания также представила модуль для, так называемой, матрицы фар.

Каждый светодиод в модуле может отдельно контролироваться и регулироваться, и встречные транспортные средства гарантированно не подвержены свету благодаря распределению специальных датчиков и электроники. В сочетании с системой камеры, модуль определяет препятствия на обочине дороги и освещает их.


Исследование дизайна лазерных фар: Следующий шаг для автомобильного освещения

Лазерный свет является следующим важным шагом в развитии автомобильной светотехники. Преимуществом этой технологии является сильно сфокусированный свет, который может быть направлен с высокой точностью. Светоизлучающая поверхность также очень мала, что означает, что фары могут быть более компактными, чем в современных моделях. Компания Osram представила образец на ISAL чтобы подчеркнуть будущие возможности дизайна для фар с лазерными источниками света. Источник лазерного света от Osram основан на комбинации лазера и фосфора: Лучи нескольких синих лазерных диодов направлены на модуль преобразования фосфора, который преобразует их в белый свет. Этот свет затем, как и в классической технологии автомобильного освещения, соединяется в оптической системе фары и направляется на поверхность дороги. Osram поставляет аналогичные системы под названием “Phaser” для проекторов и оборудования для эндоскопии. Название Phaser появляется из сочетания двух слов: фосфора и лазера.

Умная светотехника и светодиодные фары

Умная светотехника и светодиодные фары

Умная светотехника для авто

Система умного света обеспечивает пять различных типов световых пучков. Асимметричное распределение света в загородном режиме (езда со скоростью до 90 км/ч по дорогам, изобилующим поворотами и подъемами различной крутизны) позволяет осветить проезжую часть ярче и под более широким углом. Для водителя длина видимого участка увеличивается на 10 м, что позволяет лучше ориентироваться и вовремя реагировать на происходящее впереди.

Как только скорость переваливает за 90 км/ч, включается двухступенчатый режим «трасса». Сначала возрастает мощность ксеноновых ламп (с 35 до 38 Вт), а затем, при скорости свыше 110 км/ч расширяется угол освещения. Результат – мощный световой поток по всей ширине дороги, убивающий темноту впереди на 120 м. Водитель может оценить дорожную обстановку на 50 м дальше, чем с обычными фарами.

Умный свет призван облегчить езду в тумане. Если скорость автомобиля падает ниже 70 км/ч, а водитель включает задний противотуманный фонарь, система воспринимает эти факты как приказ действовать. Левая ксеноновая фара поворачивается наружу на 8° и наклоняется. Таким образом, дорога «под ногами» видна как на ладони. Эта функция работает вплоть до 100 км/ч.

Идея поворотной фары, следующей за баранкой, не нова. Устройство можно встретить, например на «Форд-Фокус». Логичным продолжением служит умный «угловой» свет – если водитель встает на перекрестке с включенным «поворотником», противотуманная фара с этой стороны автоматически зажигается, улучшая обзор вбок. Функция активна и в случае, если водитель поворачивает руль на большой угол, а скорость не превышает 40 км/ч.

Осветительный модуль «Хелла» основан на принципе смещающегося прожектора. В обычной биксеноновой фаре электропривод в доли секунды сдвигает линзу из положения «ближний свет» в «дальний». В фаре установлена призма сложной формы, которая заменяет смещаемую линзу.

Читайте также:  Где и как можно оплатить штраф ГИБДД в 2022 году

В различных условиях призма подставляет ту или иную грань под световой поток, обеспечивая несколько режимов: широкоформатный городской, пригородный с учетом рельефа, дальнобойный трассовый, для плохих погодных условий. Немаловажное уточнение – фара перестраивается для работы как в лево-, так и в правостороннем движении.

Чтобы режимы менялись автоматически, использован контрольный блок, собирающий данные от датчиков скорости движения, освещенности, печки, дождя и положения руля. Разработчики даже связали работу фар с навигатором. При езде с его использованием фары заранее узнают, в какой режим им переходить в следующую минуту.

Светодиодная оптика для авто

Уже сейчас светодиоды используют в задних фонарях, но им найдется место и в фарах головного света. Как выражаются инженеры, многосекционные светодиодные фары должны вытеснить ксеноновые.

Достоинств у диодов много. Во-первых, они занимают гораздо меньше места. Во-вторых, срок их службы превышает 10 000 часов – столько в среднем живет сам автомобиль. В-третьих, скорость срабатывания диодов гораздо выше, чем галогенных или ксеноновых фар. В-четвертых, они потребляют меньше электричества. Наконец, если диоды объединены в группы, каждую легко контролировать по отдельности.

Например, с ростом скорости возникает необходимость в более мощном свете. Но дальнобойность фары ограничена условием: встречных ослеплять нельзя! Светодиоды позволяют найти компромисс. За ветровым стеклом устанавливают камеру, следящую за впереди идущими машинами. Камера соединена с компьютером, который контролирует дистанцию между автомобилем и другими объектами и выбирает оптимальную дальность света. «Скорострельность» диодов позволяет в доли секунды увеличивать или уменьшать освещенную зону, не допускать ослепления водителей и обеспечивать максимальную световую отдачу.

Еще одна новинка – «световая занавеска». Принцип таков: свет отдельных диодов проецируется на пластиковую пластину и отражается от нее, в результате формируется равномерный световой пучок. При этом часть света проходит сквозь пластину и создает впечатление светящейся поверхности.

Умная светотехника автомобиля

Как работает

На современных автомобилях появилась система умного света. Она способна заглядывать за поворот, дополнительно освещать пешеходов вдоль обочины, и не слепит встречных водителей.

Система умного света обеспечивает пять различных типов световых пучков.

Асимметричное распределение света в загородном режиме (езда со скоростью до 90 км/ч по дорогам с поворотами и подъемами различной крутизны) позволяет осветить проезжую часть ярче и под более широким углом. Для водителя длина видимого участка увеличивается на 10 м, что позволяет лучше ориентироваться и вовремя реагировать на происходящее впереди.

Как только скорость переваливает за 90 км/ч, включается двухступенчатый режим «трасса». Сначала возрастает мощность ксеноновых ламп (с 35 до 38 Вт), а затем, при скорости свыше 110 км/ч расширяется угол освещения. Результат – мощный световой поток по всей ширине дороги, убивающий темноту впереди на 120 м. Водитель может оценить дорожную обстановку на 50 м дальше, чем с обычными фарами.

Умный свет призван облегчить езду в тумане. Если скорость автомобиля падает ниже 70 км/ч, а водитель включает задний противотуманный фонарь, система воспринимает приказ действовать. Левая ксеноновая фара поворачивается наружу на 8° и наклоняется. Таким образом, дорога «под ногами» видна как на ладони. Эта функция работает вплоть до 100 км/ч.

Осветительный модуль «Хелла»

Основан на принципе смещающегося прожектора. В обычной биксеноновой фаре электропривод в доли секунды сдвигает линзу из положения «ближний свет» в «дальний». В фаре установлена призма сложной формы, которая заменяет смещаемую линзу.

В различных условиях призма подставляет ту или иную грань под световой поток, обеспечивая несколько режимов: широкоформатный городской; пригородный с учетом рельефа; дальнобойный трассовый; для плохих погодных условий. Немаловажное уточнение – фара перестраивается для работы как в лево-, так и в правостороннем движении .

Чтобы режимы менялись автоматически, использован контрольный блок, собирающий данные от датчиков скорости движения, освещенности, печки, дождя и положения руля. Разработчики даже связали работу фар с навигатором. При езде с его использованием фары заранее узнают, в какой режим им переходить в следующую минуту.

Светодиодная оптика авто

Светодиоды используют в задних фонарях, благодаря лучшему быстродействию. Они зажигаются быстрее, чем обычные лампы накаливания, а это может сократить тормозной путь сзади идущего автомобиля. По мнению инженеров, многосекционные светодиодные фары должны вытеснить ксеноновые.

Достоинства диодов

  • Занимают гораздо меньше места.
  • Срок службы превышает 10 000 часов – столько в среднем живет сам автомобиль.
  • Скорость срабатывания диодов гораздо выше галогенных или ксеноновых фар.
  • Потребляют меньше электричества.
  • Если диоды объединены в группы, каждую легко контролировать по отдельности.

Например, с ростом скорости возникает необходимость в более мощном свете. Но дальнобойность фары ограничена условием: встречных ослеплять нельзя. Светодиоды позволяют найти компромисс.

За ветровым стеклом устанавливают камеру, следящую за впереди идущими машинами. Камера соединена с компьютером, который контролирует дистанцию между автомобилем и другими объектами и выбирает оптимальную дальность света. «Скорострельность» диодов позволяет в доли секунды увеличивать или уменьшать освещенную зону , не допускать ослепления водителей и обеспечивать максимальную световую отдачу.

Иерархия светодиодного головного света

Самые простые – фары имеют от 10 до 20 статичных светодиодов. Второй уровень – матричный свет и 20-40 световых элементов на фару, электроника которых может затемнять отдельные вертикальные секции, чтобы не слепить других водителей.

На третьем уровне находятся пиксельные фары, которые имеют ещё больше светодиодов (до 100 на каждую фару) и разделены на вертикальные и горизонтальные секции с возможностью регулировки каждого отдельного пикселя.

  • Для чего нужен антибликовый козырёк против ослепления

Высший уровень – пиксельные фары с дополнительными лазерно-люминофорными секциями дальнего света, которые на пустой дороге при скорости более 80 км/ч освещают дорогу на 500 метров вперёд. Если камера засекла впереди другую машину, то “лазеры” сразу отключаются.

Читайте также:  Как выбрать летнюю резину на автомобиль? Полезные советы + Видео

Умные фары: как работает адаптивный свет

Технологии, используемые в автомобильных осветительных приборах, развиваются бурными темпами. Еще недавно бал правили галогенные лампы, а сегодня уже и ксенон не является синонимом мощности светового луча: светодиодные фары светят лучше. При этом светодиоды позволили внедрить технологию умного освещения, которая обеспечивает отличную видимость в темное время суток и при этом не слепит водителей встречных машин

ФАРЫ. ХОРОШИЕ И РАЗНЫЕ

В последние годы автопроизводители активно внедрют в свои модели системы адаптивного освещения. Начало было положено системой фиксированного освещения поворота: при включении указателя поворота или при начале маневра на автомобиле со стороны поворота включался дополнительный источник света, освещающий изгиб дороги под углом 40°. Дальнейшим развитием данной системы стала технология динамического освещения: при повороте руляона обеспечивала синхронный поворот модуля фары на 15° во внешнюю сторону и на 8° в сторону внутреннюю. Но все это уже вчерашний день — сегодня автоконцерны предлагают интеллектуальные системы адаптивного освещения Adaptive Front Lighting System со светодиодными модулями.

Так, на магистрали водитель может использовать только дальний свет — при обнаружении попутного или встречного автомобиля камера передаст сигнал в блок управления фарами, который оптимизирует световой поток так, чтобы не ослеплять других участников движения. При движении по второстепенным дорогам на скорости от 55 до 100 км/ч активируется режим асимметричного распределения светового пучка, обеспечивающий хорошую освещенность, но препятствующий ослеплению водителей встречных автомобилей. Также в арсенале Adaptive Front Lighting System варианты света для неблагоприятных погодных условий, настройки светового пучка для движения в жилых кварталах, свет, адаптирующийся к условиям парковок…

Блок управления анализирует ситуацию и выключает соответствующий сектор светодиодов.

«Умный» свет фар в условиях города.

В условиях тумана оптимизируется и форма, и мощность луча.

СВЕТИТ, НО НЕ СЛЕПИТ

В 2016 году компания Valeo предложила для Audi A3 концепцию не ослепляющего дальнего света Adaptive Driving Beam (ADB), заключающуюся в адаптации светового пятна в соответствии с дорожными условиями, а недавно представленная технология Valeo Matrix Beam, предназначенная для рынка запасных частей, стала развитием концепции ADB. Принцип технологии заключается в том, что в блоке фары используются светодиодные сегменты, каждый из которых управляется собственной микросхемой. Контроль дорожной ситуации ведет видеокамера, установленная в автомобиле, а блок управления фарами головного света может отключать отдельные сегменты фар, которые могут создать неудобства водителям автомобилей встречного или попутного направления. Водитель автомобиля с такими фарами постоянно имеет в зоне видимости хорошо освещенный участок дороги. При этом оптимизируется не только профиль светового пучка, но и его мощность.

Редакция рекомендует:

«Галогенки» Osram Night Breaker 200: как улучшить свет фар и ничего не нарушить

Как вернуть неокрашенному пластику кузова черный цвет?

Как победить коррозию? Эффективный способ для самостоятельного устранения ржавчины

Автомобильные фары будущего

Да будет свет! Из темноты в будущее автомобильного освещения.

Автомобильное освещение в настоящий момент находится в стадии эволюционной трансформации. Все автомобильные компании в ближайшем будущем планируют улучшать качество дорожного освещения своей продукции. Дело в том, что уже со следующего года такие организации как NHTSA и IIHS (независимые организации, которые проводят тестирование новых автомобилей на безопасность) будут выставлять итоговые рейтинги безопасности с учетом качества дорожного освещения. Что же нас ждет в ближайшем будущем? Как изменятся технологии в области головной оптики автомобилей? Давайте немного приоткроем завесу будущего автомобильной промышленности.

Напомним, что недавно Страховой институт безопасности дорожного движения США (IIHS) провел ряд тестов головной оптики популярных кроссоверов. В результате выяснилось, что большинство новых современных автомобилей оснащаются не эффективными передними фарами, которые не идеально освещают дорогу, а также способны навредить встречному потоку машин. В итоге IIHS приняла решение с 2017 года ввести в свой регламент проверки автомобилей на безопасность обязательный тест на качество головной оптики. Так что теперь чтобы автомобилю получить высшую награду IIHS придется успешно пройти не только краш-тесты, но и тест на качество передний оптики.

Как видите к головной оптике в настоящее время направлено максимальное внимание, поскольку качество освещения дороги напрямую влияет на безопасность на дороге. Поэтому многие автомобильные компании в настоящий момент ведут активные разработки по созданию головной оптики будущего.

Давайте узнаем, как может измениться передняя оптика новых автомобилей в ближайшем будущем. Для этого оценим шансы той или иной технологии, которые в настоящий момент применяются в автопромышленности.

Галоген

Несмотря на то, что ксеноновые фары в несколько раз эффективнее обычной галогенной оптики, галогеновые фары по-прежнему самые распространенные в автопромышленности.

Напомним, что в ксеноновых лампах нет нити накаливания. Лампа дает свет за счет горения газа. В итоге ксеноновая лампа выдает более яркий и мощный свет, а также потребляет значительно меньше электроэнергии, чем обычная галогеновая лампочка.

Но, тем не менее, чаще всего ксеноновые фары устанавливаются на премиальные автомобили или топовые комплектации более дешевых моделей.

Удивительно, но с момента появления ксеноновых ламп, прошло уже более 20 лет, с тех пор, когда их впервые представила компания БМВ на модели Е32 (7-серии). Также в 1996 году ксеноновые фары появились на Lincoln Mark VIII, который стал первым Американским автомобилем с ксеноновой оптикой.

Почему же автопроизводители не хотят отказываться от обычных галогеновых фар, несмотря на явное преимущество ксеноновой оптики?

Дело в том, что себестоимость галогеновых фар намного меньше ксеноновой оптики. Также эффективность галогеновых фар также не оспорима.

Например, рыночная стоимость обычных галогеновых автомобильных ламп составляет в среднем от 100 до 500 рублей, когда как ксеноновые лампы стоят в среднем от 2 тыс. рублей.

Современные галогеновые лампы производятся в условиях жестких условий допуска. Например, на заводе Osram малейшие отклонения в процессе производства ламп, приводят к полной отбраковки всей партии продукции.

Читайте также:  Правила дорожного движения – правила жизни. Как повысить культуру на дорогах?

15 лет назад часть подобной партии пошла бы в продажу.

Популярность галогеновых ламп также связана с тем, что для их работы не требуется дополнительных преобразователей тока и т.п. Галогеновая оптика работает напрямую от аккумулятора, когда как ксеноновые фары используют специальные блоки розжига и преобразователи переменного тока.

Тем не менее, галогеновые лампы, также как и ксеноновые обречены на полное исчезновение из автопромышленности. Уже в недалеком будущем эти лампы будут восприниматься точно так же, как сейчас воспринимаются античные лампы, заполненные ацетиленом. Просто сегодня еще не пришло время к новым технологиям. Но судя по прогрессу в автопромышленности, совсем скоро передняя оптика автомобилей изменится до неузнаваемости.

Светодиоды

По аналитики компании Osram Sylvania в течение ближайших 4-х лет во всем мире 20 процентов новых автомобилей будут оснащены светодиодными фарами. Например, уже сегодня даже не дорогие автомобили начали оснащаться светодиодами в качестве габаритного света. Но уже скоро даже эконом-автомобили получат светодиодную переднюю оптику.

Светодиоды будут играть роль в снижении потребления топлива. Это главная цель автопромышленности сделать все автомобили более экономичными.

В самом деле, светодиоды реально могут снизить количество потребляемого автомобилем топлива. Например, светодиодная автомобильная лампа ближнего света потребляет всего от 15 до 18 Вт мощности, когда как галогеновая лампа потребляет от 55 до 65 Вт. Ксеноновая лампа в среднем потребляет больше 42 Вт. Так что как видите преимущество светодиодов для энергосбережения очевидно.

Кроме того, светодиодные лампы дают максимальный свет с момента включения всего за одну миллисекунду. Например, обычная лампа накаливания выдает полную мощность и яркость в 250 раз медленнее. В итоге использование светодиодов очень выгодно в задней оптике.

Также светодиоды ярче. Светодиодные лампы имеют яркость в 3000 люменов, когда как галогеновые лампы выдают яркость в среднем 800 люменов.

В том числе температура цвета светодиодных автомобильных ламп ближе к естественному солнечному свету.

Светодиоды выдают световую гамму в 5500 Кельвинов, когда как ксеноновые лампы в среднем выдают гамму в 4500 Кельвинов. Галогеновые лампы не могут дать теплоту светового потока схожего с дневным солнечным светом, так как температуру света таких ламп не превышает 2500-3000 Кельвинов.

Почему же тогда светодиодные фары не вытеснили с рынка традиционную галогенную и более дорогую ксеноновую оптику?

Дело в том, что самый большой недостаток светодиодов это стоимость производства светодиодной оптики. Но в будущем, несомненно, производство светодиодов станет намного дешевле и возможно сравняется по себестоимости с галогеновой оптикой. Тогда, безусловно, светодиодная головная оптика полностью вытеснит с рынка традиционное автомобильное освещение.

Сегодня многие автомобильные компании начали инвестировать огромные средства в разработку современных светодиодных фар. В итоге на рынке появились автомобили с полностью светодиодной головной оптикой. Правда, технология светодиодного дорожного освещения у всех компаний своя. Например, Тойота развивает технологию проектора на основе светодиодов. Ауди и Акура создали передние фары, которые имеют множество светодиодов выставленных в один ряд и создающие единый пучок света. Компания Лексус, используя примерно ту же технологию, установила светодиоды в треугольник. Компания Форд создала блоки из светодиодов, напоминающие кубики льда.

Но, несмотря на бурное развитие светодиодной головной оптики, в ближайшем будущем эта технология вряд вытеснит с рынка галогеновые фары. Дело в том, что для производства светодиодного головного освещения, требуется специальная электронная печатная плата, которая содержит более 130 различных компонентов, начиная от алюминиевых элементов, и заканчивая дорогостоящими отражателями.

В том числе в процессе производства светодиодов и светодиодных фар требуется стерильное производство, с дорогостоящим оборудованием, которое следить за влажностью в помещении и имеет антистатическую защиту. Также процесс производства светодиодов в несколько раз медленнее, чем необходимо для производства галогеновых ламп.

В итоге себестоимость светодиодов пока что очень дорогая, связанная с большими затратами на единицу продукции.

Например на заводе Osram в течении года при 24 часовой смене производится около 100 млн. галогеновых ламп. К сожалению, за этот же срок завод может произвести только столько светодиодов, которых хватит только для 130 000 светодиодных фар Ford F-150.

Так что для того чтобы уменьшить себестоимость все автопроизводители должны в первую очередь стандартизировать все компоненты светодиодного освещения. Только после появления единого стандарта производства светодиодного головного освещения начнется этап снижения себестоимости.

Светодиодные матрицы

Светодиодные матричные фары, которые имеют активное освещение (могут освещать встречную полосу движения, но не ослеплять водителей) имеют ряд преимуществ перед обычной светодиодной головной оптикой.

Впервые подобная оптика появилась на Ауди А8. Так матричные фары Ауди имеют 1024 отдельных светодиода на одной плате (на одном чипе) создавая, по сути, подобие экранных пикселей. В сочетании с умным программным обеспечением и чувствительных инфракрасных камер матричные светодиодные фары имеют высокую четкость и разрешение. Также благодаря умному управлению электроника позволяет активировать только те светодиоды, которые в настоящий момент обеспечат максимальную видимость на дороге, не ослепляя встречных водителей и пешеходов.

Например, благодаря матричным светодиодам, обочина дорога будет полностью освещена, когда как лицо идущего на встречу пешехода будет затемнено. То же самое касается и водителей встречных автомобилей.

Конечно, эта технология массово пока не будет применяться в ближайшие годы в автопромышленности, так как себестоимость этой технологии оставляет желать лучшего. Но в будущем, когда производство светодиодных фар станет намного дешевле, есть вероятность что матричная передняя оптика займет свое доминирующее положение на рынке.

Лазер

Лазерные фары могут стать следующим шагом в развитии автомобильной передней оптики. Уже сегодня, подобное головное освещение используется на гиперкарах BMW i8.

В качестве освещения в этой машине используется три лазерных диода Osram.

Как работают лазерные фары?

Технология основана на оптических эффектах преобразования света. Так синий луч светодиодных лазеров проходит через керамический люминофор. В результате свет преобразуется в один белый мощный пучок, который проецируется на дорогу в довольно широком размахе. Так дальность пучка света составляет около 600 метров. Также лазерные фары дают в 10 раз больше яркости, чем светодиодные лампы (количество яркости на 1 квадратный метр в несколько раз превышает все существующие автомобильные фары в мире).

Читайте также:  Знак "Шипы": что означает? для чего нужен? - скачать и распечатать

В настоящий момент в одной фаре используется три светодиодных лазера. Но уже в следующем году компания БМВ представит новую головную оптику, которая будет иметь всего один лазер для создания пучка света, что уменьшит себестоимость лазерной оптики на 1/3.

Применяя на автомашине лазерные фары, производитель позволяет разработчикам, конструкторам, дизайнерам и инженерам проявлять больше гибкости для разработок новых технологий в области дорожного освещения. Например, оснастив i8 лазерной оптикой, инженеры БМВ создали технологию Dynamic Light Spot Laser для безопасного освещения пешеходов. Кстати подобная технология уже применяется на не лазерных фарах в противотуманных фарах некоторых моделей БМВ.

Будущее автомобильной оптики

В будущем возможно автопроизводители будут создавать гибридную переднюю автомобильную оптику, которая будет использовать, как светодиодные матричные фары, так и лазерные технологии. К сожалению, высокая стоимость технологий и различные нормы безопасности в ряде развитых стран не позволят лазерной оптики вытеснить другие системы автомобильного освещения с рынка в ближайшие годы.

Так что, на ближайшие 5-10 лет не стоит ждать повсеместного распространения не только лазерных фар, но и других более дешевых технологий на основе светодиодных ламп.

Скорее всего, до 2030 года большинство современных автомобилей будут по-прежнему оснащаться галогеновыми и ксеноновыми лампами, за исключением задней оптики, которая распространяется быстрыми темпами в автопромышленности.

Высвечиваем будущее опытными фарами Фольксвагена

Считается, что вероятность попасть в аварию в тёмное время суток втрое выше, чем в светлое. Около половины смертей при ДТП происходят в темноте, хотя мы ездим в таких условиях в четыре раза реже, чем днём.

В опытно-исследовательском центре Фольксвагена в Вольфсбурге царит секретность: камеры на телефонах и ноутбуках заклеены, не приветствуется даже малейшее отклонение от заданного маршрута. Вот-вот нам покажут новейшие наработки в области освещения ― перспективные фары, фонари и прочее. Первым слово берёт кто-то из шеф-дизайнеров. Вторым — тоже дизайнер, но рангом пониже. Говорят, как им важно играть пластикой осветительных приборов, их наполнением, иметь свободу формы. Только этим в компании занимаются 15 художников. А инженеры на третьих ролях?

Исторически вроде бы нет. Вообще, прорывом в области головного света стало внедрение галогенной двухнитевой лампы H4 в 1971 году. Её номинальный световой поток ближнего света в 1000 люмен был недостижим, и по сей день H4 применяется во многих бюджетных автомобилях, включая начальные версии седана Volkswagen Polo. Именно количество света от источника в основном определяет то, как хорошо фара освещает дорогу. А площадь отражателя, его форма и качество поверхности, оптические свойства рассеивателя — нюансы.

До начала 90-х годов мир (за исключением США с их собственными стандартами) довольствовался лампой H4 и некоторыми другими галогенками. К этому времени конструкторы научились добиваться лучшего использования светового потока за счёт формы отражателя или установки проекторных модулей. Затем появились новые лампы, включая популярнейшую однонитевую H7 (1500 люмен) ― такая ставится в фары ближнего и дальнего света средних комплектаций калужских Polo. Правда, Kia Rio/Hyundai Solaris используют лампы HB3 (аж 1860 люмен), а рекорд производительности среди галогенок держит Н9 дальнего света, генерирующая 2100 люмен.

В 1991 году ― снова благодаря инженерам ― появилась революционная технология ксеноновых ламп номиналом 3200 люмен, более чем в три раза больше, чем у Н4. Источником света стала электрическая дуга, а не разогретая нить. Никак не отличаясь внешне, ксеноновые фары поставили массу технических вызовов: выросли требования к точности оптики, наличие блоков розжига усложнило компоновку узлов. Чуть позже для ксенона стали обязательны автоматический корректор и система фароочистки. Всё это очень дорого, зато эффективно, особенно в сочетании с системами поворота луча (с 2000-х годов).

Лет 15–20 назад дизайнеры вышли из тени. Сначала они играли «внутренним наполнением» фары. Помните, как при схожей форме отличались фары «третьего» и «четвёртого» Гольфов? Как свежо смотрелись прозрачный пластик без оребрения и нарядные «кругляши» внутри? Потом фары вытягивают, плющат, сужают ради хищного взгляда… А какие горизонты открыл «световой дизайн», когда меняется собственно форма светящихся элементов! Сейчас, чтобы выполнить все пожелания эстетов, в фаре просто не остаётся места для лампы. Поэтому курс ― на светодиоды, и не только у Фольксвагена.

Любопытно, что ксеноновые технологии умирают, но ещё не мёртвы. Придуман новый стандарт ламп мощностью 25 Вт вместо классического 35-ваттного ксенона. Это позволяет вписать световой поток в регламентные 2000 люмен, не требующие дорогущих автокорректора и омывателя. Увы, свет таких фар моего бусика Citroen SpaceTourer скорее разочаровывает. Выигрыш относительно хороших галогенок ― разве что в более приятном глазу холодном свете. Поговаривают, что кашу с 25-ваттным ксеноном заварили производители ламп для загрузки простаивающих мощностей.

Но инженерам тоже нравится глобальный переход на светодиодные технологии, ведь снижается энергопотребление и увеличивается срок службы. Цена уже не пугает. Простенькая фара с малым числом диодов (как на Polo в «топе») стоит лишь чуть больше среднестатистической галогенки. Но 25-ваттная ксеноновая без корректора ― почти вдвое дороже. Кусаются пока матричные фары: в них десятки диодов позволяют гибко изменять светораспределение попеременным подключением. Можно, например, затенить встречный автомобиль при включённом дальнем. Но и они вот-вот подешевеют.

Матричный модуль фары IQ.Light новейшего Туарега размером с полблока сигарет содержит плату, радиатор с вентилятором, 48 диодов ближнего света и 27 ― дальнего. Вкупе с дополнительными боковыми элементами работает этот ансамбль классно, словно протягивая щупальцы света ко всем неосвещённым участкам дороги, оставляя встречных в тени. Режимы светораспределения зависят от массы факторов: погоды, скорости, траектории… Дальнобойность ― на 100 метров лучше, чем у 35-ваттного ксенона.

Читайте также:  Какой автомобиль лучше: Ford Focus или Skoda Octavia

Ту же эффективность уже обеспечивает компактный «микропиксельный» светодиод размером 4х4 мм. Я подержал такой в руках и оценил работу оснащённой им фары, не заметив существенной разницы в силе света. Впечатляет точность управления пучком: прогресс относительно фар Туарега такой же, как между ними и устаревшими всего за четыре года фарами Пассата с механической шторкой. Довольны и дизайнеры, и инженеры: имея в фаре три «пиксельных» диода, дающих 1024 индивидуальных мини-луча, можно играть матрицей на 3072 ячейки вместо нынешних 75–80.

Возможно, развитие света пойдёт в другом направлении. Источники света размножаться не станут, а светораспределением займутся промежуточные фильтры-матрицы с разрешением до 30 000 пикселей. Этого достаточно, чтобы не просто искусно менять пучок, но и проецировать на дорогу надписи, символы, подсказки… Например, показывать в вираже коридор, в котором автомобиль поедет при текущем повороте руля, или дублировать на асфальт сигналы поворота. Но на мой взгляд, это утопия. Дороги и так переполнены визуальным мусором, провести такую идею через сертификационные дебри малореально, а чуть грязь ― и вся красивая «картинка» поплывёт.

Совершенствуются и простые светодиоды. В специальном чёрном ангаре, оборудованном для испытания систем освещения, нам показали прототип с высокомощными диодами, потребляющими 3–4А против примерно 1А у нынешних. Света действительно становится больше, а это значит, им также можно управлять более гибко. Если сузить пучок дальнего света таких фар, он прошьёт 550 метров темноты, что под силу только лазерным фарам, где свет «выбивается» из люминесцентной фосфорной пластины лазерными лучами.

Такая технология на рынке присутствует около пяти лет ― помимо BMW, как раз у фольксвагеновских коллег по концерну, фирмы Audi. Однако её появление на «народных автомобилях» VW маловероятно. Из-за специфичных материалов и технологий такие фары безумно дороги (в случае с седаном Audi A8 ― на 215 тысяч рублей дороже и без того недешёвых матричных), а перспектив снижения стоимости не видно. Кроме того, лазерно-люминесцентный источник даёт очень мощный, но узкий пучок, применение которого ограничено дальним светом.

Какую картину освещённости вообще предпочитает потребитель? Наиболее противоречивые оценки обычно вызывает именно дальний свет. В Скандинавии предпочитают дальнобойный пучок, а в остальной Европе ― широкий, создающий иллюзию большой мощности. Volkswagen надеется со временем предложить водителю выбор разных пучков. Ближний свет существенно зарегламентирован, хотя кто-то предпочитает чёткую границу света и тени (характерную для проекторных фар), а кто-то ― плавную. Объективно они одинаково эффективны, и это чисто дело вкуса. Немцы стараются сделать переход «слегка сглаженным», чтобы понравиться всем.

А вот отдельные противотуманные фары — вымирающий динозавр. Угадаете, кому они помешали в борьбе за чистоту линий кузова? Полноценно компенсировать потерю противотуманок можно только применением дорогого адаптивного света основных фар, умеющего расширять пучок при плохой погоде и при поворотах. В случае недорогих машин нас просто лишают дополнительного источника света. Причём россиянам должно быть особенно обидно: в отличие от Европы применение противотуманок у нас законно в любое время суток, а дополнительный свет весьма полезен на неустроенных дорогах.

Не ожидается прогресса в области фароочистки. Нынешние струйные системы устраивают Volkswagen, поскольку вписываются в сертификационные требования, по которым фара загрязняется тарированным составом. Всем ясно, что в химическом грязном тумане российских реагентов омыватели малоэффективны, но никто не станет разрабатывать новую технологию специально для нас. Ещё важный момент ― температура стекла фары. Светодиоды холодны и не растапливают снег так, как ксенон и особенно галогенки. Поэтому если в автомобиле использованы мощные LED-элементы, требующие вентилятора охлаждения, идущий от него поток стараются направить по стеклу.

Ещё один подводный камень ― надёжность и долговечность светодиодов. Теоретически это как раз их сильная сторона. Но все диодные фары и фонари «запаяны» и не подразумевают замену светящихся элементов. Только недавно появились первые сообщения, что Toyota внедряет заменяемые LED-модули в фонарях новой Короллы. Расчётный срок службы диодов хоть и больше, чем у ламп, но тоже конечен. Volkswagen рассчитывает на 8000 часов работы, это примерно 11 лет, если жечь фары по два часа в день. Или меньше года, если держать их включёнными круглосуточно, например в такси. Затем неизбежно потускнение.

И всё же пути назад нет. Лет через пять на Фольксвагенах останутся только диоды. Дизайнеры в экстазе, конструкторы будут искать новые поля применения технологий. Например, для коммуникации между беспилотникам. Сейчас мы бы хотели знать, что на уме у другого водителя, и световые сигналы могут помочь. Уже готова проекция на асфальт активных парковочных линий. Скоро можно будет отправить соседям по потоку текстовые, визуальные сообщения на экранах или в светодиодном поле задних фонарей…

Главный потребительский вывод из всего сказанного ― не покупайтесь на догмы. Ошибочно думать, что галогенки ― самые ущербные фары по определению, а светодиоды лучше ксенона. Внутри каждого из типов есть лидеры и аутсайдеры. Базовые LED-модули запросто могут светить хуже топовых галогенок. Помните, что если у фары нет омывателя, световой поток ближнего света гарантированно меньше 2000 люмен. Слова «светодиодная фара» могут означать как продукт высоких технологий, так и недорогую поделку. Одно бесспорно: фары становятся всё красивее и красивее.

За кадром

Ссылка на основную публикацию