Принцип работы карбюратора
Сейчас все современные бензиновые двигатели комплектуются инжекторной системой питания. За счет того, что инжектор является более совершенным, то он практически вытеснил карбюратор на автотранспорте. Но по дорогам колесит еще большое количество автомобилей, двигатель которых оборудован карбюраторной системой.
Карбюратор — это основной узел такой системы, и главная его задача – приготовление топливовоздушной смеси в необходимой пропорции для последующей её подачи в камеры сгорания двигателя.
Всего имеется три вида карбюраторных систем, одна из которых – барботажная вовсе не используется, а две другие, включающие в конструкцию игольчато-мембранный и поплавковый карбюраторы вполне еще применимы и встретить их можно на самой разнообразной технике.
Из двух последних, на автотранспорте использовался только карбюратор поплавкового типа. Игольчато-мембранный же тип можно встретить на бензопилах, мотокосах и даже на авиатехнике.
Устройство и принцип работы карбюратора
Карбюратор поплавкового типа представляет собой единый узел, включенный в систему питания. За время использования такой системы на автомобилях было разработано большое количество карбюраторов, имеющие разные особенности по конструкции, но все они функционируют используя один принцип.
Простейший поплавковый карбюратор состоит из двух камер:
- поплавковой камеры;
- и смесительной.
В задачу первой входит дозирование топлива и поддержание его на определенном уровне. Благодаря этой камере обеспечивается стабильная подача бензина при разных условиях работы мотора.
Конструктивно она очень проста. Внутри устройства имеется поплавковая камера с помещенным в нее поплавком, связанным с клапаном игольчатого типа, который размещен в канале подачи бензина от бензонасоса. По мере расхода топлива поплавок опускается, а с ним и клапан, в результате канал открывается и бензин закачивается в полость. При закачке необходимого уровня поплавок вместе клапаном поднимается вверх и полностью перекрывает канал.
Видео: Устройство карбюратора
Вторая камера обеспечивает смешивание топлива в проходящий воздушный поток. Для этого в ней установлен диффузор – специально суженый участок камеры. Благодаря этому диффузору, воздух, проходящий через него, значительно ускоряется.
Две эти камеры соединены между собой распылителем. Та его сторона которая установлена в поплавковой камере дополнительно оснащена топливным жиклером – специальной вставкой со сквозным отверстием определенного диаметра. Его задача – обеспечивать подачу строго определенного количества бензина. Второй конец распылителя выведен в диффузор.
Работает все так: на такте впуска в цилиндре двигателя поршень движется вниз, создавая разрежения. Из-за этого происходит всасывание воздуха через воздухозаборник с установленным в него фильтром. Этот заборник располагается на карбюраторе, поэтому поток проходит через смесительную камеру.
Движение воздуха при ускорении в диффузоре, обеспечивает образование разрежения в распылительной трубке, из-за чего топливо начинает из него вытекать и подмешиваться в проходящий поток.
Регулировка подаваемой смеси в цилиндры обеспечивается дроссельной заслонкой, которая установлена за диффузором. Путем перекрывания канала, по которому движется топливовоздушная смесь, регулируется скорость движения воздуха. Именно на эту заслонку и воздействует водитель, нажимая на акселератор.
Устройство карбюратора подразумевает еще одну заслонку – воздушную. Если дросселем регулируется подаваемое количество уже готовой смеси, то вторая заслонка перекрывает подачу воздуха. А поскольку в цилиндрах разрежение при работающем моторе все же создается, то смесь получается обогащенной, которая характеризуется повышенным содержанием топлива.
Что еще входит в конструкцию?
Но это упрощенная схема карбюратора. На деле же выясняется, что карбюратор состоит из большого числа деталей и все значительно сложнее, ведь двигатель во время эксплуатации работает в разных режимах, при этом для каждого из них необходима смесь соответствующего состава.
Поэтому современный карбюратор поплавкового типа имеет сложное устройство со значительным количеством каналов, вспомогательных систем и дополнительного оборудования. Все это позволяет карбюратору обеспечивать смесеобразование на любых режимах работы.
Поэтому в конструкции карбюратора, помимо двух камер, имеется:
- система пуска;
- главная дозирующая система;
- система холостого хода;
- насос ускорительный;
- экономайзер;
- эконостат;
Каждая из этих составляющих имеет свое назначение в устройстве карбюратора и обеспечивают подачу оптимальной по количеству и качеству смеси на любых режимах функционирования силового агрегата.
1. Система пуска
Система пуска обеспечивает подачу обогащенной смеси в цилиндры двигателя во время запуска мотора. Основным элементом этой системы является воздушная заслонка. В отечественных карбюраторах она имеет ручное управление (рукоятка подсоса, выведенная в салон). В зарубежных аналогах часто встречается автоматическая система пуска, которая самостоятельно регулирует степень открытия воздушной заслонки.
При этом система пуска конструктивно сделана так, чтобы предотвратить подачу переобогащенной смеси в цилиндры сразу после пуска мотора. Для этого привод заслонки сделан так, чтобы она имела возможность самостоятельно приоткрываться, обеспечивая обеднение смеси. К тому же она связана посредством системы тяг с дроссельной заслонкой, что позволяет карбюратору во время запуска и прогрева регулировать степень открытия этих заслонок.
2. Главная дозирующая система
Главная система дозировки обеспечивает основную подачу смеси в цилиндр при всех режимах работы мотора. Единственное, она не задействуется при работе двигателя в режиме холостого хода. Основная ее задача – подача необходимого количества смеси (несколько обедненной) в цилиндры двигателя. Для того, чтобы исключить переобогащение смеси в переходных режимах эта система осуществляет компенсацию недостающего количества воздуха путем подачи из распылителя не чистого бензина, а эмульсии, в которую уже подмешана часть воздуха. Для этого на большинстве карбюраторов топливо, перед попаданием в распылитель, проходит через специально проделанные эмульсионные колодца, где и осуществляется предварительное смешивание.
3. Система ХХ
Система холостого хода обеспечивает устойчивую работу силовой установки на малых оборотах, когда дроссельная заслонка полностью закрыта. Представляет она собой систему каналов по которым подается воздух и топливо под дроссельную заслонку. То есть, смесительная камера при таком режиме не задействуется, поскольку система ХХ изготавливает необходимое количество смеси и подает во впускной коллектор в обход ее. Дополнительно эта система включает в себя еще один канал – переходной, в задачу которого входит обеспечение поддержания стабильной работы мотора во время смены режима от ХХ до средних оборотов.
Ускорительный насос
Ускорительный насос обеспечивает подачу необходимого количества смеси при резком ускорении, когда главная дозирующая система не успевает обеспечить это, поскольку она обеспечивает нормальную подачу только при плавном открытии дроссельной заслонки. В задачу этого насоса входит кратковременное обогащение смеси, что позволяет избежать «провала» при ускорении. Для этого имеется специальный канал, перекрытый шариковыми клапанами и оснащенный мембраной, привод которой осуществляется от дросселя. При резком нажатии на акселератор, шарики приоткрывают канал, а мембрана выдавливает порцию эмульсии в специальный распылитель, установленный перед диффузором.
Экономайзер и эконостат
Экономайзер обеспечивает максимальный выход мощности от мотора, когда это необходимо. Достигается это подачей обогащенной смеси за счет подачи дополнительной порции эмульсии в основной распылитель в обход главной системы дозировки.
Эконостат позволяет двигателю выдавать максимальную мощность при высоких оборотах. Для этого данный элемент обеспечивает подачу и бензина непосредственно из поплавковой полости и распыление его перед диффузором.
Это основные элементы и системы карбюратора. Также в его конструкции используется поплавковая камера сбалансированного типа. Чтобы бензин в ней поддерживался на заданном уровне, в камере не должно образовываться разрежение и для этого ее соединяют с атмосферой. Сбалансированная же камера подразумевает объединение ее с горловиной карбюратора, что предотвращает попадание в нее загрязняющих веществ вместе с воздухом.
Принцип работы и устройство карбюратора
Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.
Принцип работы и устройство простейшего карбюратора
В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.
До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна.
Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания.
Устройство карбюратора наших дней
Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин.
Поплавковый карбюратор состоит из множества элементов:
- Поплавковая камера для сохранения горючего на заданном уровне.
- Поплавок, оснащенный специальной иглой, который используется для дозирования уровня бензина.
- Смесительная камера ― для смешения топлива в мелкодисперсном виде с воздухом.
- Диффузор — зауженное место для увеличения скорости воздуха.
- Распылитель, оснащенный жиклером, который соединяет камеры, подает смесь в диффузор.
- Заслонка дросселя — для регулировки потока рабочей жидкости.
- Воздушная заслонка — для регулировки потока воздуха, поступающего в карбюратор. С помощью элемента создают смесь «обогащенную», «нормальную» или «бедную».
- Система холостого хода — подает горючее мимо смесительной камеры по спецканалам в задроссельное пространство.
- Эконостаты и экономайзеры — обеспечивают дополнительную подачу топлива при существенных нагрузках. Эконостаты работают от разрежения воздуха, экономайзерами управляют принудительно.
- Подсос горючего — для принудительного обогащения топливной смеси. С помощью рычага водитель приоткрывает дроссельную заслонку, воздух проходит сквозь смесительную камеру и забирает больше горючего. В результате смесь становится обогащенной, помогает запустить холодный двигатель.
Принцип работы карбюратора
Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.
Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.
В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.
В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.
Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.
С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.
Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.
Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.
Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.
Классификация карбюраторов
Все карбюраторы можно различать по следующим признакам:
- По направлению движения потока различают горизонтальные и вертикальные модели.
- По регулировке отверстия распылителя и формированию разрежения разделяют: системы с постоянным разрежением; с постоянным сечением (серийные устройства); с золотниковым дросселированием — модели для мототехники, в них вместо дроссельной заслонки объем поступающей смеси регулирует шибер-золотник.
- По числу смесительных камер выпускают одно- и многокамерные модели. «Сдвоенные» устройства используются в моторах с цилиндрами, которые находятся далеко друг от друга. В результате каждая половина осуществляет впрыск в свои цилиндры.Принцип работы карбюратора
Карбюраторы подразделяются на виды, а работа каждого вида осуществляется своим индивидуальным способом. К примеру, фитильные функционируют благодаря тому, что заставляют воздушные потоки просачиваться по поверхности пропитанных газом фитилей. Вследствие этого процесса происходит испарение паров бензина в атмосферу. Но, стоит признать, что о фитильных карбюраторах мы рассказываем для того, чтобы осветить полный обзор информации о карбюраторах. На самом деле этот метод давно перестали использовать, так как он устарел более сотни лет назад.
В основном карбюраторы сегодняшнего дня функционируют благодаря механизму распыления. Они работают за счёт эффекта Вентури с целью вытягивания бензина из камеры.
Все карбюраторы, которые работают по принципу Бернулли, обладают некоторыми особенностями. Изменение давления воздуха предсказуемо и прямо пропорционально скорости его движения. Это имеет большое значение, так как воздух, проходящий через карбюратор, содержит узкую сжатую трубку Вентури. Ее функция состоит в том, чтобы ускорять воздушный поток, проходящий через нее.
Воздух функционирует только благодаря педали акселератора. Она и дроссельный клапан, который расположен в карбюраторе – связаны между собой тросиком. Этот клапан закрывает трубку в момент не использования педали акселератора, а когда происходит нажатие на эту педаль, он ее открывает. Благодаря этому воздух проходит сквозь трубку Вентури.
Выходит, что происходит засасывание большего количества топлива из камеры для смешивания. Именно эти принципы лежат в основе работы карбюратора.
Подавляющее количество этих приборов оснащены дополнительным клапаном над трубкой Вентури (дроссель). Он частично закрыт, когда двигатель не работает, а это, в свою очередь, делает количество воздуха, которое способно пройти в карбюратор, меньше. Вследствие этого образуется более богатая смесь/воздух или топливо, поэтому дроссель откроется, когда двигатель придет в работу, и нагреется, ведь для эксплуатации ему больше не будет нужна богатая смесь.
Иные компоненты карбюраторной системы также разработаны с целью воздействия на воздушно-топливную смесь при различных условиях работы.
Карбюратор является сложным элементом, и вся его техническая работа тоже достаточно сложна.
Какая подвеска лучше мягкая или жесткая
В этот раз мы поговорим о том, какая подвеска лучше: мягкая или жесткая. Давайте выясним, в чем отличия. Мы объясним вам, почему выбор подвески зависит от целей, которые вы преследуете при покупке автомобиля. Прочность не всегда зависит от твердости, но комфорт от мягкости.
Для начала разберем, какие функции должна выполнять каждая подвеска:
для уменьшения вибрации при движении;
быть единым, неотделимым от транспортного средства механизмом во время экстремальной остановки или столкновения;
обеспечение плавного движения станка;
поддержание четких углов колес
эффективное и быстрое устранение колебаний кузова при движении по ухабам, неровностям, “полицейские легли” так далее.
Чтобы все 4 колеса уверенно стояли на поверхности дороги, они должны иметь возможность двигаться вверх и вниз и касаться всей ширины дороги. Чтобы подвеска была мягче или жестче, нужно произвести специальную регулировку пружин. Амортизаторы также играют важную роль.
Эти элементы подвески отвечают за “тушение” колебаний. То есть их настройка зависит от степени поглощения вибраций, а также от степени смещения кузова при движении по неровной дороге. Амортизатор может сделать подвеску более жесткой, но и более гибкой. Не нужно слишком плавно регулировать — машина будет качаться как маятник. Слишком сложно — тоже не нужно: машина будет „грабить“ и малейшие неровности дорожного покрытия. Компетентный механик может отрегулировать амортизаторы так, чтобы ощущалась меньшая вибрация, а также для уменьшения вибрации автомобиля при разгоне и торможении. К тому же подвеска не среагирует при прохождении через самую маленькую ямку и не повредится, если машина окажется в глубокой луже.
Далее поговорим о жесткой подвеске, ее плюсах и минусах.
Когда подвеска хорошо отрегулирована, железный конь становится безопаснее и маневреннее. Вот почему у спортивных автомобилей только более жесткая подвеска. У него как минимум 6 преимуществ:
колеса лучше контактируют с дорожным покрытием;
при поворотах даже на большой скорости машина очень устойчива;
резкие маневры выполняются без усилий;
тормозной путь короче, чем у мягкой подвески;
на ровной дороге легко развить высокую скорость за минимальное время;
мокрые, заснеженные или обледенелые дороги — не повод сбавлять скорость.
Однако у жесткой подвески есть и недостатки. Они связаны с расходами на здоровье и техническое обслуживание водителя.
Итак, владелец автомобиля с жесткой подвеской чувствует каждую ямку, неровности и камень. Позвоночник перегружен, и через несколько лет вождения могут возникнуть боли в спине и даже деформации.
Еще один немаловажный минус — за более жесткой подвеской придется внимательно следить, так как она быстро изнашивается. Амортизаторы придется менять каждые 70000 км пробега, а то и чаще.
Специалисты убеждены: более жесткая подвеска — не лучший вариант, ведь часто разгружается одно колесо. Это означает, что при поворотах и выполнении резких маневров вес машины составляет „несет“ на одной из сторон. Так колесо осталось без „масса“, легко отделяется от поверхности, что делает машину неуправляемой.
Как сделать подвеску жестче
Если вы часто ездите по ровным городским дорогам или шоссе с большим количеством поворотов, если вы хотите сделать свой автомобиль более маневренным и управляемым — отрегулируйте подвеску. Сделайте его тверже. Сделаем предварительную оговорку: не стоит делать это самостоятельно, если вы не профессиональный автомеханик. Сделать подвеску жестче в специализированной мастерской можно двумя способами:
Будет установлен качественный стабилизатор поперечной устойчивости, который не позволит колесам на одной оси двигаться с разной скоростью. Однако метод не самый лучший — одно колесо останется ненагруженным при повороте на 90 градусов и менее.
Они сделают подвеску жестче: определенным образом отрегулируют пружины и амортизаторы. Автомобиль действительно станет послушнее, но разницу в комфорте вы сразу почувствуете.
Далее поговорим о мягкой подвеске.
Очевидные преимущества автомобиля с мягкой подвеской — комфорт и четкая тяга (лучше жесткой подвески). Мягкая регулировка подвески пользуется популярностью в США уже много лет — 8 из 10 дорог там прямые. Отметим наглядно преимущества этого типа:
эффективное поглощение колебаний оси при движении по неровной дороге;
комфортная езда, отсутствие тряски и нагрузки на позвоночник водителя и пассажиров;
детали правильно настроенной мягкой подвески изнашиваются за 100 тысяч километров и даже больше;
нагрузка на колеса при повороте распределяется более равномерно, чем в жесткой подвеске;
тяга лучше по сравнению с жесткой настройкой.
Минусов у мягкой подвески тоже много. Они связаны с особенностями конструкции.
При повороте необходимо снизить скорость, иначе наклон становится слишком большим и даже есть риск опрокидывания.
Машинка менее управляема, чем в жесткой настройке. При быстрой езде остановиться на автомобиле с мягкой подвеской быстро не получится — автомобиль будет «раскачиваться» при любом резком движении. „Лежащие полицейские“, дрифт, короткие прямые гонки (дрэг-рейсинг) — даже не думайте об этом.
Пассажиров авто с мягкой подвеской часто давят.
Когда подвеска слишком мягкая, хорошо себя чувствует в поворотах: колеса с другой стороны провисают в воздухе.
Если вес пассажиров и багажа с одной стороны больше, чем с другой (с учетом багажника), автомобиль будет наклоняться еще больше, станет практически неуправляемым и потеряет сцепление с дорогой.
Как сделать подвеску мягче
Если вы часто ездите по разбитым грунтовым дорогам, движение по прямой или вы едете спокойно, предпочитая комфорт — выбирайте автомобиль с мягкой подвеской. Другой вариант — да „смягчить“ жесткая подвеска одним из следующих способов:
Купите мягкие шины или немного снизьте текущее давление. Первый вариант более безопасен, потому что автомобиль со спущенными шинами труден для вождения и неустойчив на дороге. Езда с такими шинами нагружает двигатель и заставляет его расходовать больше топлива. К тому же мягкие покрышки прослужат недолго;
Отвести машину в гараж, поменять амортизаторы. Если установить газ или масло, получится более мягкая подвеска;
Также можно заменить пружины амортизатора в гараже. Выбрать можно двумя способами: купить новый, помягче или отрезать старый. Второй вариант сделает машину ниже. Нравится — решайте сами.
Помните: нужны грамотные настройки, чтобы подвеска была мягче. Разумный вариант — последняя степень мягкости подвески, чтобы быть на границе с жесткой.
Мягкость и жесткость подвески – что важнее для комфорта?
Специалисты-подвесочники могут рассказать множество интересных примеров из практики, а мне придется ограничиться лишь кратким рассказом о том, почему жестче не всегда цепче, а мягче не всегда комфортнее. Работа подвесок машины вовсе не так проста, как кажется на первый взгляд. Они выполняют множество функций, которые не вполне очевидны. Я постараюсь кратко упомянуть об основных.
А вообще, о работе подвесок написано много книг, и большинство из них очень толстые. Я попробую лишь “по верхам” обозначить основные моменты, чтобы уложиться в формат познавательной статьи.
Почему без подвески не обойтись
Даже очень ровные дороги на самом деле имеют изгиб по многим направлениям, да и сама Земля мало похожа на бесконечную плоскость. И чтобы все четыре колеса касались поверхности, они должны иметь возможность перемещения вверх и вниз. При этом крайне желательно, чтобы беговая поверхность колеса прилегала к покрытию всей своей шириной при любом положении подвески. Так что машины, у которых подвески жесткие и короткоходные, практически обречены на плохое сцепление колес с дорогой, ведь всегда одно из колес будет разгружено.
Почему подвеска должна иметь ход сжатия
Для контакта всех колес с дорогой вовсе не обязательно, чтобы подвеска могла сжиматься, достаточно того, что колеса смогут двигаться только вниз. Но при движении машины в поворотах возникают боковые силы, которые стремятся наклонить авто. Если при этом одна сторона машины сможет приподниматься, а другая не сможет опуститься, центр тяжести авто сильно сместится в сторону загруженного колеса, что в свою очередь вызовет много негативных последствий.
В первую очередь еще большую разгрузку внутреннего по отношению поворота колеса и увеличение момента крена из-за перемещения центра тяжести вверх относительно центра крена подвески (о нем ниже). И, разумеется, если у колес нет хода сжатия, то даже маленькая неровность под одним из колес должна вызывать перемещение кузова, перемещение всех остальных колес вниз со всеми связанными затратами энергии на подъем и снижением сцепления колес. Что, мягко говоря, не слишком комфортно. А еще разрушительно для кузова и деталей подвески. В общем, подвеска должна быть сбалансированной, иметь ход сжатия и ход отбоя для нормальной работы.
Почему машина кренится в поворотах
Раз уж мы определились с тем, что подвеска у машины должна быть и имеет возможность перемещения вверх-вниз, то чисто геометрически образуется некая точка, центр, вокруг которой поворачивается кузов машины при крене. Эта точка называется центром крена машины.
А сумма сил инерции, воздействующих на машину в повороте, как раз приложены к ее центру масс. Если бы он совпадал с центром крена, то в повороте никакого крена бы не было, но он обычно расположен гораздо выше, и в результате образуется кренящий машину момент. И чем выше расположен центр крена, чем ниже центр тяжести, тем он меньше. На специальных гоночных конструкциях вроде машин Формулы 1 центр тяжести помещают ниже центра крена, и тогда машина может крениться в противоположную сторону, как катер на воде.
Собственно, расположение центра крена зависит от конструкции подвески. И автомобильные инженеры неплохо научились его “поднимать” повыше, изменяя конструкцию рычагов, что в теории могло бы избавить от кренов не только низкие спортивные авто, но и достаточно высокие. Проблема в том, что подвеска, сконструированная для обеспечения “неестественно задранного” центра крена, успешно борется с наклонами кузова, но при этом плохо справляется с основной задачей — демпфированием неровностей.
Почему подвеска должна быть мягкой
Достаточно очевидно, что чем мягче подвеска, тем меньше изменение положения кузова при наезде на неровность и при крене меньше распределяется нагрузка между различными колесами. А значит, и сцепление колес с дорогой при этом не ухудшается и не расходуется энергия на перемещения центра масс машины вверх-вниз. Что же, мы нашли идеальную формулу? Но, к сожалению, не все так просто.
Во-первых у подвесок ограничены ходы сжатия, и они должны быть согласованы с изменением нагрузки на ось при загрузке машины пассажирами и багажом, и с нагрузкой, возникающей при прохождении поворотов и неровностей. Слишком мягкая подвеска при повороте сожмется так сильно, что колеса с другой стороны оторвутся от земли. Так что подвеска должна не допустить исчерпания хода сжатия с одной стороны и вывешивания колеса с другой.
Получается, что слишком мягкой подвеске быть тоже плохо… Оптимальным вариантом является сравнительно небольшой диапазон “мягкости”, после чего подвески становятся жесткими, но настроить такую конструкцию тем сложнее, чем выше разница между жесткой и мягкой ее частью.
При любом перераспределении нагрузки между колесами происходит ухудшение общего сцепления колес с дорогой. Дело в том, что догрузка одних колес не компенсирует все потери при разгрузке других. А в случае вывешивания разгруженных колес увеличение сцепления на догруженной стороне не компенсирует и половины потерь.
Помимо общего ухудшения сцепления, это еще и приводит к ухудшению управляемости. Борются с этим неприятным фактором, изменяя наклон плоскости качения колеса относительно дороги — так называемый развал. В результате конструктивных мероприятий, направленных на программирование изменения развала при крене машины удается компенсировать изменение сцепления колес при поперечных нагрузках в разумном диапазоне и тем самым сделать управление машиной проще.
Почему же приходится делать подвески жестче на спортивных машинах?
На управляемости машины крайне негативно сказываются любые изменения углов установки подвески при кренах машины и задержки в откликах на управляющие воздействия из-за смещения центра тяжести. А значит, приходится делать подвески жестче, чтобы в повороте крены уменьшались.
Крайним выходом является мощный стабилизатор поперечной устойчивости — торсион, который препятствует перемещению колеса одной оси относительно другого. Но это не самый лучший способ. Да, он улучшает ситуацию с изменением углов установки колес в повороте, но зато разгружает внутреннее, по отношению к повороту, колесо, и перегружает наружное. Немного лучше просто сделать подвеску жестче. Это больше сказывается на комфорте, но зато не так разгружает внутреннее колесо.
Немалое значение амортизаторов
Помимо упругих элементов, в подвеске машины присутствуют и газовые или жидкостные амортизаторы — элементы, ответственные за гашение колебаний подвески и вывода энергии, которую машина тратит на перемещения центра масс. С их помощью можно подправить все реакции подвески на сжатие и отбой, ведь амортизатор может обеспечить в динамике куда большую жесткость, чем пружина. При этом его жесткость, в отличие от пружин, будет очень разной в зависимости от хода подвески и скорости ее перемещения.
Разумеется, совсем мягкий амортизатор не сможет выполнять свою основную задачу — гашение колебаний, машина попросту будет раскачиваться после прохождения неровности. А установка очень жесткого будет создавать эффект, схожий с установкой очень жесткой пружины, которая не хочет сжиматься и тем самым увеличивает нагрузку на колесо и разгружает все остальные. Но тонкая настройка поможет уменьшить крены в поворотах и помочь пружинам, уменьшить клевки кузова при разгоне и торможении и при этом не мешать колесам проезжать мелкие неровности. И разумеется, не допускать “пробоя” подвесок при проезде жестких неровностей. В общем, воздействие на поведение машины они оказывают не меньшее, чем жесткость пружин.
Немного о комфорте и частотах колебаний
Понятно, что у машины без подвески комфорт был бы нулевой, ведь все мелкие неровности от дороги передавались бы прямо на ездоков. Бр-р. Но если подвеску сделать очень мягкой, то ситуация станет ненамного лучше — постоянная раскачка тоже крайне плохо сказывается на людях. Оказывается, человек плохо переносит колебания как с небольшой амплитудой и большой частотой от жесткой подвески, так и с большой амплитудой и с малой частотой от мягкой.
Для создания комфортных условий для пассажиров необходимо согласовать жесткость пружин, амортизаторов и покрышек так, чтобы на самых ходовых для этой машины покрытиях частоты колебаний пассажиров и уровень ускорений оставались в комфортных пределах.
Частота и амплитуда колебаний подвески важны еще и в другом аспекте — собственные частоты резонанса системы машина-подвеска-дорога не должны совпадать с возможными частотами управляющих воздействий и возмущений от дороги. Так что задача конструкторов заключается еще и в том, чтобы обойти опасные режимы как можно дальше, ведь в случае резонанса можно и машину перевернуть, и потерять управление, и просто поломать подвески.
Итак, какой должна быть подвеска?
Как это ни парадоксально, но чем мягче подвеска, тем лучше сцепление колес с дорогой. Но при этом она не должна допускать сильных кренов и изменения пятна контакта колес с дорогой. Чем хуже дороги, тем более мягкой должна быть подвеска для получения хорошего сцепления. Чем ниже коэффициент сцепления колес, тем мягче должна быть подвеска. Казалось бы, проблему может решить установка стабилизатора поперечной устойчивости, но нет, у него тоже есть свои негативные черты, он делает подвеску более “зависимой” и уменьшает ход подвески.
Так что настройка подвески остается делом для настоящих мастеров и всегда требует много времени на натурные испытания. Множество факторов затейливо переплетаются и, изменив один параметр, можно ухудшить и управляемость, и плавность хода. И не всегда жесткая подвеска делает машину быстрее, а мягкая — комфортнее. На управляемости сказывается и изменение жесткости передней и задней подвесок относительно друг друга и даже малейшее изменение характеристик жесткости амортизаторов. Надеюсь, эта статья поможет более тщательно относиться к выбору комплектующих для подвесок и предотвратит необдуманные эксперименты.
Подвеска автомобиля – комфортная связь с дорогой
Что такое подвеска автомобиля, знает каждый, кто получил хоть небольшой опыт вождения, и только новички имеют лишь смутное представление об этом важном узле. А ведь именно эта совокупность деталей создает те условия движения, которые мы привыкли называть комфортными. Впрочем, она же может стать причиной некоторых неудобств на пересеченной местности. Итак, что же собой представляет подвеска?
Подвеска автомобиля как его основа
Так оно и есть, этот узел или, как было сказано выше, конструкция из ряда деталей, соединяет кузов машины с колесами, причем эта связь может быть как жесткой, так и упругой, в зависимости от установленных элементов. К примеру, задняя зависимая подвеска автомобиля, устройство которой отличается простотой, держится на двух цилиндрических пружинах и дополнительно крепится на 4 продольных рычагах. Однако такая конструкция имеет немалый вес, а значит, будет влиять на плавность хода. Но будем последовательны. Рассматриваемый нами узел делится по ряду признаков на следующие типы: многорычажный и двухрычажный, активный, торсионный, зависимый и независимый. Кроме того, есть деление на передние и задние подвески.
Для начала рассмотрим двухрычажный и многорычажный виды подвесок автомобилей. Первый вариант имеет короткий верхний и длинный нижний поперечные рычаги, на которых и закреплен к кузову. Помимо этого, между крепежами предусмотрен цилиндрический упругий элемент, смягчающий толчки на неровной местности. Однако у такой схемы есть существенные недостатки – поперечные движения колеса слишком незначительны, что влияет на боковую устойчивость и, как следствие, ускоряет износ покрышек. Плюсом является то, что каждое колесо независимо, и благодаря этому автомобиль устойчивее держится на неровностях, поддерживая качественное сцепление с дорогой.
Многорычажная схема представляет собой усложненный вариант двухрычажной со всеми ее достоинствами и отличается наличием шаровых шарниров, которые увеличивают мягкость хода, и сайлент-блоков (поворотных опор), которыми она и закреплена на раме. Эти блоки обеспечивают шумоизоляцию кузова от колес. Помимо прочего, добавьте сюда продольные и поперечные регулировки, возможные для каждого независимого элемента отдельно. Однако все эти преимущества увеличивают стоимость устройства, в результате чего подобные узлы ставят только на автомобили представительского класса, чем и объясняется их идеальный контроль на дороге, а также мягкость контакта с дорожным покрытием.
Активный и торсионный типы подвесок автомобилей
Очень интересна подвеска, название которой говорит само за себя – torsion, что на французском языке означает скручивание. Именно это свойство лучше всего характеризует торсионную схему. Изготавливается ее упругий элемент из легированной стали, которая после ряда обработок обретает очень интересную способность закручиваться вокруг продольной оси стержня. Он может иметь квадратное или круглое сечение, быть сплошным или набранным из отдельных пластин, в любом случае в результате получается подобие распрямленной пружины, но с лучшими характеристиками.
Устанавливается torsion как продольно, так и поперечно, причем в первом случае на грузовики, а во втором – на легковые машины. Преимуществами торсионные типы подвесок автомобилей обладают следующими: легкость в сравнении с пружинными упругими элементами, компактность. Благодаря этим упругим деталям, можно с легкостью отрегулировать высоту дорожного зазора, стянув с помощью специального мотора стержни торсионов и, таким образом, приподняв кузов. Подобное устройство имеется во многих автомобилях, причем оно позволяет приподнять транспортное средство на трех колесах для замены четвертого без участия домкрата.
Наиболее эффективное применение торсионные подвески нашли в производстве военной бронетехники.
Активная подвеска имеет схему, разительно отличающуюся от классической, то есть никаких упругих элементов, будь то стержни или винтовые пружины, в данном узле нет. Все нагрузки из-за толчков колес или крена кузова на неровной местности компенсируются специальными пневматическими или гидравлическими стойками, в некоторых случаях возможна их комбинация. По сути, данный узел – не что иное, как баллон, заполненный жидкостью или сжатым газом, что распределяются на вышеозначенные стойки с помощью компрессоров. Подобная схема очень удобна ввиду возможности ее полной компьютеризации, когда электроникой регулируется жесткость амортизации, а также компенсируются перекосы кузова.
Что лучше – зависимая или независимая схема подвески автомобиля?
По сути, сегодня зависимая схема все больше устаревает и используется в тех немногих марках и моделях транспортных средств, которые выпускаются уже много десятков лет и еще не сняты с производства. Так, ярким примером узла такого типа является Волга или Жигули. Такая подвеска характерна также для УАЗа и некоторых классических моделей Jeep. Ее основным признаком является то, что при наезде на кочку одним колесом, вы получаете изменение угла всей оси. Комфорт движения в таких условиях – минимален, плюсом же является простота такой конструкции и, соответственно, ее низкая стоимость. Еще один вариант – зависимая схема де Дион, которая существует практически с начала автомобилестроения. В ней картер главной передачи крепится независимо от моста.
Независимая схема подвески автомобиля имеет явные преимущества в том отношении, что каждое колесо перемещается на неровной местности само по себе, не влияя на второе. Один такой вариант мы уже рассматривали, это двухрычажная система. Другой, не менее интересный пример – схема МакФерсона, используемая с 1965 года, когда впервые была установлена на Пежо-204. Данная подвеска основана на одном единственном рычаге, блоке, стабилизирующем поперечную устойчивость, и еще одном блоке, состоящем из телескопического амортизатора в совокупности с винтовой пружиной. Такой вариант хуже двухрычажного, поскольку в схеме МакФерсона довольно ощутимо меняется развал при высоком ходе подвески, а также отсутствует изоляция дорожных вибраций.
Какая подвеска лучше: мягкая или жесткая
Поговорим в этот раз о том, какая подвеска лучше: мягкая или жесткая. Разберем, в чем отличия. Расскажем, почему выбор подвески зависит от целей, которые вы преследуете при покупке автомобиля. Ибо жесткость не всегда идет в ногу с цепкостью, а мягкость – с комфортом.
Содержание
- Суть подвески
- Амортизаторы
- Жесткая подвеска
- Как сделать подвеску жестче
- Мягкая подвеска
- Как сделать подвеску мягче
- Осторожнее на поворотах
Суть подвески
Для начала разберем, какие функции должна выполнять любая подвеска:
- уменьшать крен при повороте;
- быть одним неотделяемым от авто механизмом при экстренном торможении или столкновении;
- обеспечивать плавность хода машины;
- поддерживать четкость углов установки колес авто;
- эффективно и быстро гасить колебания кузова во время движения по ямам, кочкам, «лежачим полицейским» и пр..
Чтобы все 4 колеса уверенно стояли на дорожном покрытии, у них должна быть возможность двигаться вверх-вниз и прикасаться к дороге всей шириной. Сделать подвеску мягче или жестче помогает настройка пружин. Амортизаторы также играют немалую роль.
Амортизаторы
Эти элементы подвески отвечают за гашение колебаний. То есть, от их настройки зависит крен, а также перемещения кузова при движении по неровной дороге. Амортизатор может сделать подвеску жесткой, но гибкой. Не нужно настраивать его слишком мягко – автомобиль будет качаться, как маятник. Жестко – тоже не нужно: машина будет «собирать» мельчайшие шероховатости дорожного покрытия. Грамотные автослесари могут настроить амортизаторы так, что кренов будет меньше, «клевков» при разгоне и торможении – тоже. Притом подвеска не будет отзываться на спине водителя при малейшей ямке и не пробьется, если автолюбитель окажется в глубокой луже.
Далее поговорим о подвеске жесткой настройки, ее плюсах и минусах.
Жесткая подвеска
Когда подвеска настроена жестко, железный конь становится более безопасным и маневренным. Потому на спортивные автомобили ставят только жесткую подвеску. Плюсов у нее, как минимум, 6:
- колеса хорошо цепляются за дорожное покрытие;
- при повороте даже на большой скорости машина почти не кренится;
- резкие маневры совершаются без усилий;
- тормозной путь меньше, чем у мягкой подвески;
- на ровной дороге легко развить большую скорость за минимальное время;
- мокрая, заснеженная или покрытая льдом дорога – не повод снижать скорость.
Но минусы у жесткой подвески есть. Связаны они со здоровьем водителя и стоимостью обслуживания.
Так, владелец автомобиля с жестко настроенной подвеской чувствует каждую яму, кочку, камень. Позвоночник перегружается, что уже через пару лет езды может заявить о себе – спина начнет болеть, может появиться искривление и пр..
Еще один существенный минус – за жесткой подвеской придется тщательно следить, т.к. изнашивается она быстро. Амортизаторы придется менять каждые 70 тысяч километров или даже чаще.
Эксперты уверены: жесткая подвеска – не лучший вариант, потому как одно колесо часто разгружено. Это значит, что при прохождении поворотов и совершении резких маневров вес автомобиля «перекатывается» на одну сторону. Так, колесо, оставшееся без «веса», легко отрывается от поверхности, отчего машина станет неуправляемой.
Как сделать подвеску жестче
Если часто ездите по ровным городским дорогам или трассам с множеством поворотов, хотите сделать машину более маневренной и управляемой – перенастройте подвеску. Сделайте ее жестче. Сразу оговоримся: не стоит делать это самостоятельно, если вы не профессиональный автослесарь. В сервисной станции сделать подвеску жестче могут двумя способами:
- Установят качественный стабилизатор поперечной устойчивости, который не даст колесам, находящимся на одной оси, двигаться в разном ритме. Способ, впрочем, не из лучших – одно колесо останется разгруженным при повороте на 90 градусов и менее.
- Сделают подвеску жестче: Настроят определенным образом пружины, амортизаторы. Машина действительно станет более «послушной», но разницу в комфорте почувствуете сразу.
Далее поговорим о мягкой подвеске.
Мягкая подвеска
Очевидные плюсы автомобиля с мягкой подвеской – комфорт и четкое сцепление с дорогой (лучше, чем у жесткой подвески). Мягкая настройка подвески много лет была популярна в Штатах – 8 из 10 дорог там прямые. Четко обозначит плюсы можно так:
- эффективное гашение колебаний осей при передвижении по неровной дороге;
- комфортное передвижение, отсутствие нагрузок на позвоночник водителя и пассажиров;
- детали правильно настроенной мягкой подвески изнашиваются к 100 тысячам километров пробега или даже больше;
- нагрузка на колеса при крене распределяется равномернее, чем на жесткой подвеске;
- сцепление с дорогой лучше, чем у жесткой настройки.
Минусов у мягкой подвески также немало. Они связаны с особенностями конструкции.
При повороте приходится снижать скорость, иначе крен становится слишком сильным, есть даже риск перевернуться.
Машина хуже управляется, чем с жесткой настройкой. Быстро ездить, разгоняться и тормозить на авто с мягко настроенной подвеской не получится – машина «клюет» при любом резком движении. «Полицейские развороты», дрифт, короткие заезды по прямой (драг-рейсинг) – даже не думайте об этом.
Пассажиров автомобиля с мягко настроенной подвеской часто укачивает.
Когда подвеска чересчур мягкая, она слишком сильно сжимается на повороте: колеса с другой стороны провисают в воздухе.
Если вес пассажиров и багажа на одной стороне больше, чем на других (с учетом багажника), машина на повороте накренится еще сильнее и станет практически неуправляемой, потеряет сцепление с дорогой. Опытные автовладельцы борются с этим, меняя развал колес.
Как сделать подвеску мягче
Если часто ездите по разбитым, грунтовым дорогам, ваш путь пролегает по прямой или спокойно водите автомобиль, предпочитая комфорт – выбирайте машину с мягкой подвеской. Еще один вариант – «смягчить» жесткую подвеску одним из следующих способов:
- Купите мягкие шины или уменьшите давление в тех, что установлены сейчас. Безопаснее первый вариант, т.к. автомобиль на спущенных шинах управляется «на троечку» и неустойчив на дороге. Ездой на таких шинах вы нагружаете двигатель и заставляете его потреблять больше топлива. К тому же, спущенные шины долго не прослужат.
- Загоните машину в автосервис, поменяйте амортизаторы. Если установите газомасляные или масляные, получите более мягкую подвеску.
- Также в сервисной станции можно заменить пружины амортизаторов. На выбор два способа: купить новые, более мягкие или подрезать старые. Второй вариант сделает автомобиль ниже. Понравится ли вам это – решайте сами.
Запомните: для смягчения подвески также нужны грамотные настройщики. Разумный вариант – последняя ступень мягкости подвески, на грани с жесткой.
Подвеска в автомобиле — функции, виды, настройка
Вопрос выбора транспортного средства всегда представляет сложность из-за различных нюансов. Например, многие не могут выбрать тип подвески — мягкая или жесткая. Каждая отличается по настройкам и по-разному ведет себя на дороге. Выбирать подвеску следует, опираясь на условия эксплуатации. Нельзя полагать, что жесткость всегда означает хорошее сцепление, а мягкость — высокий комфорт.
Чтобы сделать подвеску мягкой или жесткой, нужно обращаться к настройке пружин.
Перед тем, как ответить на вопрос, какую подвеску лучше выбрать, разберемся для чего вообще в конструкции транспортного средства она необходима. Любая подвеска выполняет следующие функции в автомобиле:
1) уменьшает крен при повороте;
2) помогает при экстренном торможении и ДТП;
3) обеспечивает плавный ход;
4) поддерживает четкость углов установки колес;
5) гасит колебания кузова во время движения по неровной дороге.
Заметим, что указанные выше функции применимы только в том случае, если подвеска настроена правильно. Чтобы все 4 колеса устойчиво стояли на дороге, у них должна быть возможность двигаться и прикасаться к дорожному покрытию максимальной площадью. Чтобы сделать подвеску мягкой или жесткой, нужно обращаться к настройке пружин. Амортизаторы тоже играют свою роль в этом процессе.
Амортизаторы. Данные элементы гасят колебания во время движения. Именно от их настройки зависит крен и перемещение кузова. Амортизатор может сделать подвеску жесткой, но достаточно гибкой. Не стоит настраивать его слишком мягко, так как автомобиль будет качаться как маятник. Слишком жестко тоже плохо — автомобиль будет собирать все неровности дороги. Грамотный специалист может настроить амортизаторы так, что крен будет маленьким, а при торможении не будут возникать толчки.
Жесткая подвеска. При такой настройке подвески, автомобиль становится более маневренным и безопасным. Именно поэтому на спортивных машинах применяется жесткая подвеска. Основные преимущества такой настройки:
1) колеса имеют хорошее сцепление с дорожным покрытием;
2) при повороте автомобиль не кренится;
3) резкие маневры можно совершать без усилий;
4) тормозной путь меньше;
5) на ровной дороге скорость развивается за меньшее время;
6) можно без опасений передвигаться на мокрой и снежной дороге.
Недостатки у этой настройки тоже есть. Водитель такого транспорта ощущает каждую кочку на дороге, из-за чего могут появиться проблемы с позвоночником. Еще один недостаток заключается в том, что за жесткой подвеской нужно постоянно следить, так как она изнашивается раньше времени. Если есть желание сделать транспорт более маневренным, то нужно перенастраивать подвеску. Лучше всего проводить процедуру у специалистов. Сделать подвеску более жесткой могут двумя способами:
1) установка стабилизатора поперечной устойчивости;
2) настройка пружин и амортизаторов.
Если вам приходится часто ездить по неровным дорогам, то мягкая подвеска — самое лучшее решение
Мягкая подвеска. Главный плюс такой подвески — комфорт и лучшее сцепление с дорогой. Среди других преимуществ можно выделить следующее:
1) эффективно гасит колебания осей;
2) комфортное вождение;
3) большой ресурс элементов, входящих в подвеску;
4) нагрузка на колеса распределяется равномерно.
Главный недостаток заключается в том, что при прохождении поворота приходится снижать скорость, чтобы не перевернуться. Такой автомобиль хуже управляется. Не получится быстро ездить, разгоняться и резко тормозить — машина дергается при любом резком движении. Пассажиров в таком транспорте часто укачивает, так как колебания кузова слишком сильные.
Если вам приходится часто ездить по неровным дорогам, то мягкая подвеска — самое лучшее решение. Есть несколько способов провести такой апгрейд:
1) купить мягкие шины или уменьшить давление в установленных;
2) поменять амортизаторы в сервисе;
3) заменить пружины амортизаторов.
Итог. Подвеска автомобиля играет важную роль при движении транспортного средства. Настраивать ее следует, исходя из условий эксплуатации автомобиля.
Можно ли создать «идеальную» подвеску?
Статья о разных видах активной подвески: пневматическая, гидропневматическая, KDSS, DD, AGCS. В конце статьи — забавное видео об «идеальной» подвеске. Статья о разных видах активной подвески: пневматическая, гидропневматическая, KDSS, DD, AGCS. В конце статьи — забавное видео об «идеальной» подвеске.
Уровень комфорта при движении автомобиля всегда находится в зоне пристального внимания и конструкторов, и потребителей, независимо от того, идёт ли речь о дорогостоящих моделях или автомобилях так называемого «народного» класса.
К сожалению, до последнего времени все виды подвесок, применяемые в «бюджетных» авто, были стандартными, то есть могли либо обеспечить высокий уровень управляемости автомобилем либо комфортную езду по неровным дорогам. И лишь дорогие модели могли похвастаться так называемой «активной» подвеской, которая в той или иной мере решала обе проблемы.
Активная подвеска – приближение к идеалу
Как известно, ходовая часть авто может отличаться жёсткой подвеской — в этом случае крен кузова будет минимальным, а степень управляемости высокая. Мягкая же подвеска привнесёт мягкость хода в движение, но резкие маневры станут опасны. Как найти «золотую середину»?
Производители пришли к выводу, что оптимальным решением будет активная подвеска. Название говорит само за себя: конструкция должна уметь изменять свои характеристики в процессе движения автомобиля.
Преимущества
Процесс создания и усовершенствования активной подвески длится уже давно. Первая модель была установлена на Citroёn французскими инженерами. Немногим позже эстафету приняли проектировщики Mercedes-Benz. Преимущества введённого новшества очевидны:
- активная подвеска дала машине возможность автоматически подстраиваться под неровности дороги;
крен автомобиля при движении уменьшился, а следовательно, маневренность стала выше;
Изначально громоздкая и сравнительно примитивная, активная подвеска со временем сменила габариты на более компактные, а своё устройство – на более сложное.
Элементы, входящие в состав активной подвески
Механизмы, составляющие функциональный узел подвески, можно условно разделить на четыре основные группы. Принцип разделения — в разновидностях элементов. Для каждой группы существуют свои характеристики, которые могут быть адаптированы в процессе движения:
- Упругие элементы. Адаптивные характеристики – величина жёсткости подвески и высота автомобильного кузова над дорожным полотном.
Рычаги. Адаптивные характеристики – характеристики схождения колёс и длины регулирующих подвеску рычагов.
Поперечные стабилизаторы. Здесь доступен только один изменяемый параметр – степень жёсткости стабилизатора.
Главный смысл установки активной подвески на машину – в способности изменять все перечисленные параметры по мере того, как изменяется скорость движения, стиль вождения, характер дорожного покрытия, на котором происходит движение автомобиля.
Сделать это можно по-разному, в зависимости от типа узла. Среди применяемых способов – такие, как активизация электромагнитных клапанов, установленных в амортизационной стойке, а также изменение объёма магнитной реологической жидкости, наполняющей амортизатор.
Электронное оборудование позволяет изменять характеристики каждого элемента активной подвески в отдельности. Именно благодаря такому функционалу подвеска становится «идеальной», то есть, приспосабливается к постоянно изменяющимся условиям в процессе движения.
Виды и принципы функционирования современных подвесок активного типа
Современные разработчики активных подвесок уделают большое внимание узлам с возможностью корректировки степени демпфирования. Если в подвеске для адаптации характеристик не применяются специализированные приводы, такая система носит название «адаптивная», или «полуактивная» подвеска.
В такой модели применяется автономный контролирующий привод для упругих элементов узла. Это уже полноценная активная подвеска, она имеет гораздо более сложное устройство, чем лишённые контролирующего электронного модуля адаптивные системы.
Принцип работы активной гидропневматической подвески
Рассмотрим, как функционирует гидропневматическая подвеска ABC от конструкторов Mercedes-Benz. На одной оси каждым амортизатором в системе установлена пружина; на неё оказывает воздействие гидравлическая жидкость из гидроцилиндра. Жёсткость каждой пружины корректируется автономно при помощи насоса, который под высоким давлением нагнетает в стойку амортизатора масло.
За гидроцилиндрами амортизационных стоек следит электронная система, получающая информацию от тринадцати электронных и аналоговых датчиков. От них поступают такие данные:
- продольное автомобильное ускорение;
поперечное автомобильное ускорение;
вертикальное автомобильное ускорение;
положение автомобильного кузова относительно плоскости дороги;
Система работает таким образом, чтобы исключить резкий крен кузова при разгоне, торможении и поворотах.
Разработчики могут похвастать впечатляющими результатами: начиная со скорости в 60 км/ч данная система может понижать клиренс авто на 11 мм. Это отличный показатель корректировки аэродинамических свойств машины.
Привод высокого давления на гидравлической основе применяется также в автомобилях Citroёn. Здесь в основу положено всё то же нагнетание гидравлической жидкости в механизмы при помощи работы электромагнитных клапанов.
Принцип работы активной пневматической подвески
Пневматические элементы в конструкции подвески отвечают за клиренс авто. Регулировка степени давления в подвесном узле обеспечивается за счёт сжатого воздуха, накачиваемого в конструктивные элементы. Системы, действующие по данному принципу, используется той же компанией Mercedes-Benz.
Говоря о минусах данной подвески, нужно обязательно упомянуть тот факт, что если пневматическая подвеска при каких-либо обстоятельствах получила пробоину, автомобиль моментально опустится днищем на дорогу и, естественно, не сможет возобновить движение.
Принцип функционирования подвесок KDSS и DD
Производители Toyota и BMW предлагают модели, оснащённые подвесками, в которых главным изменяемым параметром выбрана жёсткость стабилизатора поперечной устойчивости. На прямом участке движения стабилизатор поперечной жёсткости отключается, а при входе в резкий поворот его жёсткость увеличивается, чем предотвращается кузовной крен.
Принцип работы AGCS-подвески
Разработчики Hyundai создали, пожалуй, самую неординарную на сегодняшний момент активную подвеску. В основе функционирования системы – возможность смены длин рычагов, которая влияет на схождение задних колёс. При движении по прямой электронное управление устанавливает минимальный уровень схождения. Смена полосы или вхождение в поворот приводит к увеличению схождения. Такой подход очень повышает устойчивость автомобиля и облегчает водителю процесс управления.
Активная подвеска для «народного» авто: отдалённая перспектива или реальность?
Традиционно активные подвески применяются в автомобилях премиум-класса. Это естественно, если принять во внимание сложность и высокую стоимость механизма. Подавляющее большинство недорогих моделей авто по сей день решают проблемы неровности дороги при помощи обычной подвески.
В данной модели подвески применяется 12 датчиков, которые каждые 2 миллисекунды докладывают бортовому компьютеру информацию о положении кузова и состоянии амортизаторов. Получив вводную о существенном ухабе или выбоине, компьютер посылает системе команду на изменение жёсткости амортизатора. Внешне это выглядит следующим образом: амортизатор колеса, которое начинает проваливаться в яму, становится жёстким, «зажимается» и не доходит до нижнего положения.
Такая подвеска не имеет всей полноты функций устройств, которые ставятся на дорогостоящие модели автомобилей, но, тем не менее, имеет все возможности для того, чтобы стать востребованной средним классом потребителей.
Заключение
Сложность конструктивных решений при разработке активной подвески обуславливает её высокую стоимость. Но разработчики активно двигаются вперёд, при всей сложности агрегата стоимость его постепенно удешевляется и становится доступной более широкому классу автомобилистов. Стремление к комфорту и безопасности на дорогах не позволит инженерам остановиться на достигнутом, и можно с уверенностью сказать, что «идеальная» подвеска в скором будущем станет нормой для ведущих производителей автомобилей, независимо от класса выпускаемых авто.
Видео об «идеальной» подвеске:
Какая подвеска автомобиля лучше — ликбез ЗР
— Сударыня, почему же, позвольте вас спросить, вы не надели алмазные подвески? Ведь вы знали, что мне было бы приятно видеть их на вас.
А. Дюма «Три мушкетера»
Напомним: подвеской автомобиля называется вся совокупность деталей и узлов, соединяющих кузов или раму автомобиля с колесами.
Перечислим основные элементы подвески:
- Элементы, обеспечивающие упругость подвески. Они воспринимают и передают вертикальные силы, которые возникают при проезде неровностей дороги.
- Направляющие элементы — они определяют характер перемещения колес. Также направляющие элементы передают продольные и боковые силы, и возникающие от этих сил моменты.
- Амортизирующие элементы. Предназначены для гашения колебаний, возникающих при воздействии внешних и внутренних сил
Вначале была рессора
У первых колесных не было никаких подвесок — упругие элементы попросту отсутствовали. А затем наши предки, вероятно, вдохновившись конструкцией стрелкового лука, стали применять рессоры. С развитием металлургии стальным полосам научились придавать упругость. Такие полосы, собранные в пакет, и образовали первую рессорную подвеску. Тогда чаще всего использовалась так называемая эллиптическая подвеска, когда концы двух рессор были соединены, а их середины крепились к кузову с одной стороны и к оси колес с другой.
Затем рессоры стали применять на автомобилях, причем как в виде полуэллиптической конструкции для зависимых подвесок, так и установив одну, а то и две рессоры поперек. При этом получали независимую подвеску. Отечественный автопром долго использовал рессоры — на Москвичах до появления переднеприводных моделей, на Волгах (за исключением Волги Сайбер), а на УАЗах рессоры применяются до сих пор.
Рессоры эволюционировали вместе с автомобилем: листов в рессоре становилось меньше, вплоть до применения однолистовой рессоры на современных малых развозных фургонах.
Плюсы рессорной подвески
Минусы рессорной подвески
- Простота конструкции — при зависимой подвеске достаточно двух рессор и двух амортизаторов. Все силы и моменты от колес рессора передает на кузов или раму, не нуждаясь в дополнительных элементах
- Компактность конструкции
- Внутреннее трение в рессоре с несколькими листами гасит колебания подвески, что снижает требования к амортизаторам
- Простота изготовления, дешевизна, ремонтопригодность
- Обычно используется в зависимой подвеске, а она сейчас встречается все реже
- Достаточно высокая масса
- Не очень высокая долговечность
- Сухое трение между листами требует или применения специальных прокладок или периодической смазки
- Жесткая конструкция с рессорами не способствует комфорту при малой нагрузке. Поэтому чаще применяется на коммерческих транспортных средствах.
- Регулировка характеристик в эксплуатации не предусмотрена
Пружинная подвеска
Пружины начали устанавливать еще на заре автомобилестроения и с успехом применяют до сих пор. Пружины могут работать в зависимых и независимых подвесках. Их применяют на легковых автомобилях всех классов. Пружина, поначалу только цилиндрическая, с постоянным шагом навивки по мере совершенствования конструкции подвески приобрела новые свойства. Сейчас применяют конические или бочкообразные пружины, навитые из прутка переменного сечения. Все для того, чтобы усилие росло не прямо пропорционально деформации, а более интенсивно. Сначала работают участки большего диаметра, а затем включаются те, что поменьше. Так же и более тонкий пруток включается в работу раньше, чем более толстый.
Плюсы пружинной подвески
Минусы пружинной подвески
- Отработанная и недорогая конструкция
- Сравнительно высокая долговечность
- Возможность обеспечения прогрессивной характеристики
- Не нуждается в обслуживании и смазке
- Подвеска получается не очень компактной, т.к. пружина не может передавать никаких усилий, кроме осевых, а потому требует направляющих элементов в виде рычагов.
- Пружинная подвеска не обладает свойством гашения колебаний, а потому требует мощных амортизаторов
- Нет возможности изменять характеристики подвески
Торсионы
А вы знаете, что почти в любом автомобиле с пружинной подвеской все равно есть торсионы? Ведь стабилизатор поперечной устойчивости, который сейчас ставят почти повсеместно, это и есть торсион. Вообще любой относительно прямой и длинный рычаг, работающий на кручение, представляет собой торсион. Как основные упругие элементы подвески торсионы стали применятся наряду с пружинами в самом начале автомобильной эры. Торсионы ставили вдоль и поперек автомобиля, использовали в самых разных типах подвесок. На отечественных автомобилях торсион использовался в передней подвеске Запорожцев нескольких поколений. Тогда торсионная подвеска пришлась кстати вследствие своей компактности. Сейчас торсионы чаще используют в передней подвеске рамных внедорожников.
Упругим элементом подвески является торсион — стальной стержень, работающий на кручение. Один из концов торсиона закреплен на раме или несущем кузове автомобиля с возможностью регулировки углового положения. На другом конце торсиона установлен нижний рычаг передней подвески. Усилие на рычаге создает момент, закручивающий торсион. Ни продольная, ни боковая силы на торсион не действуют, он работает на чистое кручение. Подтяжкой торсионов можно регулировать высоту передней части автомобиля, но при этом полный ход подвески остается прежним, мы только меняем соотношение ходов сжатия и отбоя.
Плюсы торсионной подвески
Минусы торсионной подвески
- Очень компактны и легки
- Возможно регулирование преднатяга торсиона, что позволяет перенастраивать подвеску под конкретные требования
- При поломке, что бывает крайне редко, легко заменить своими силами. Также упрощается ремонт передней подвески, которую всегда можно разгрузить просто ослабив торсионы.
- Очень высокие требования к качеству изготовления, поскольку торсион представляет собой не просто пруток, а требует прочной заделки концов, обычно с помощью шлицевых соединений.
- Относительно дороги в производстве
Амортизаторы
Из курса школьной физики известно, что любой упругой системе свойственны колебания с некой собственной частотой. А если еще будет воздействовать возмущающая сила с совпадающей частотой, то возникнет резонанс — резкое увеличение амплитуды колебаний. В случае с торсионной или пружинной подвеской бороться с этими колебаниями и призваны амортизаторы. В гидравлическом амортизаторе рассеивание энергии колебаний происходит за счет потери энергии на перекачивание специальной жидкости из одной камеры в другую. Сейчас телескопические амортизаторы распространены повсеместно, от малолитражек до большегрузных автомобилей. Амортизаторы, называемые газовыми, на самом деле тоже жидкостные, но в свободном объеме, а он есть у всех амортизаторов, содержится не просто воздух, а газ под повышенным давлением. Поэтому «газовые» амортизаторы всегда стремятся вытолкнуть свой шток наружу. А вот у следующего вида подвесок без амортизаторов можно обойтись.
Пневматическая подвеска
В пневматической подвеске роль упругого элемента играет воздух, находящийся в замкнутом пространстве пневмобаллона. Иногда вместо воздуха используют азот. Пневмобаллон представляет собой герметичную емкость со стенками из синтетических волокон, завулканизированных в слой герметизирующей и защитной резины. Конструкция во многом напоминает боковину шины.
Важнейшим качеством пневмоподвески является возможность изменять давление рабочего тела в баллонах. Причем перекачка воздуха позволяет устройству играть и роль амортизатора. Система управления позволяет изменять давление в каждом отдельном баллоне. Таким образом автобусы могут вежливо наклоняться на остановке для облегчения посадки пассажиров, а грузовики сохранять постоянную «стать», будучи набитыми под завязку или абсолютно порожними. А на легковых автомобилях пневмобаллоны могут устанавливаться в задней подвеске для сохранения постоянного дорожного просвета в зависимости от загрузки. Иногда в конструкции внедорожников применяют пневмоподвеску и на передней, и на задней осях.
Пневмоподвеска позволяет регулировать клиренс автомобиля. На больших скоростях машина «приседает» ближе к дороге. Поскольку при этом центр масс становится ниже, уменьшается валкость в поворотах. А на бездорожье, где важен большой дорожный просвет, кузов, наоборот, приподнимается.
Пневмоэлементы совмещают в себе функции пружин и амортизаторов, правда только в тех случаях если это заводская конструкция. В тюнинговых конструкциях, когда пневмобаллоны просто добавляют к существующей подвеске, амортизаторы лучше оставить.
Плюсы пневматической подвески
Минусы пневматической подвески
- Невысокая масса
- Возможность изменения жесткости
- Поддержание постоянного клиренса
- Возможность изменения клиренса
- Заменяет упругий и гасящий колебания элементы
- Высокая сложность и цена всей системы
- На легковых автомобилях и внедорожниках долговечность ниже, чем у других типов подвесок.
Установку пневмоподвесок очень любят тюнингисты всех мастей. И, как обычно, кто-то хочет пониже, кто-то повыше.
Зависимая и независимая подвеска
Все слышали выражение «у него независимая подвеска по кругу». А что же это значит? Независимой подвеской называется такая подвеска, когда каждое колесо совершает ходы сжатия и отбоя (вверх и вниз) не оказывая влияния на перемещения других колес.
Независимая подвеска типа МакФерсон с L или А-образными рычагами — сегодня самый распространенный тип передней подвески в мире. Простота и дешевизна конструкции совмещаются с неплохой управляемостью.
Зависимой называется такая подвеска, когда колеса объединяет одна жесткая балка. При этом ход одного колеса, например вверх, сопровождается изменением угла наклона другого колеса относительно дороги.
Раньше такие подвески применялись весьма широко — взять хоть наши Жигули. Теперь только на серьезных внедорожниках с мощной неразрезной балкой заднего моста. Зависимая подвеска хороша только своей простотой и используется там, где по условиям прочности необходим жесткий неразрезной мост. Еще есть полузависимая подвеска. Такая используется на задней оси недорогих автомобилях. Она представляет собой упругую балку, которая связывает оси задних колес.
Полузависимая подвеска обеспечивает относительно неплохие характеристики, при этом намного дешевле независимой. А вот независимая подвеска — королева подвесок — обеспечивает оптимальное сцепление каждого колеса с дорогой и наименьшую передачу толчков от неровностей на кузов автомобиля. При этом такая конструкция самая дорогая в обслуживании.
Вам помягче?
Какую подвеску предпочесть? Мягкую или жесткую? Ответим очень просто — ту, которая нравится вам, но при этом ту, которой оснастили данную модель автомобиля разработчики. Выбирайте себе автомобиль при покупке по шкале «Жестко — Мягко», а не пытайтесь усовершенствовать конструкцию после покупки. Амортизаторы разных производителей имеют разную славу на рынке: одни жестче, другие помягче. Но производитель впрямую никогда вам об этом не скажет. На коробке будет указано, применим данный амортизатор к вашему автомобилю, или нет.
Еще один способ которым допустимо немного менять жесткость подвески автомобиля, это установка шин более высокого или более низкого профиля из диапазона допускаемых заводом изготовителем. Об этом читайте здесь.
Заключение
Каждый тип подвески нашел свою нишу и неплохо себя там чувствует, продолжая постепенно развиваться. Пожалуй, специалисты в области двигателей внутреннего сгорания останутся без работы раньше, чем подвесочники! А если серьезно, то самой совершенной считается пневмоподвеска. Пока ее недостатком является сложность конструкции и цена. Но со временем, если не изобретут ничего нового, то за независимой пневмоподвеской будущее. А еще старайтесь поддерживать подвеску в исправности. Не стоит ездить с пустыми амортизаторами, гнутыми рычагами и пружиной, от которой «всего один виток с краешку отломился».
Пишите в комментариях, какой тип подвески предпочитаете вы и почему.
Лучшая подвеска легкового автомобиля
В условиях не всегда хороших дорог как отечественных, так и у ближайших соседей, наших автолюбителей всегда интересует вопрос выбора автомобиля с удобной и надежной подвеской, которая сможет выдержать наши ухабы, колдобины и которая сможет продержаться максимум без замены комплектующих. Так какая же она: лучшая подвеска автомобиля для наших условий? На этот поставленный вопрос мы и постараемся ответить в этой статье.
Для начала что же такое подвеска и для чего она служит?
Подвеска автомобиля — это связующий элемент между дорогой и собственно кузовом автомобиля. Причем у полноценных «чистокровных» внедорожников подвеска связана с рамой (т.н. рамные внедорожники), а не с кузовом. Первые подвески появились еще у карет и повозок, так что первые автомобили получили уже запатентованные и проверенные временем системы амортизации нагрузок при езде по дорогам.
Рамные внедорожники, как следует из названия, основаны на сварной или сборной раме — своеобразном «скелете», к которому прикручиваются все узлы и агрегаты будущего автомобиля. При этом кузов, как кожу со змеи, можно снять без особых сложностей, оставив перед собой суть автомобиля.
Как видно, все амортизирующие элементы прикручены к раме, а не к кузову, который выполняет роль крепежа прочих декоративных и конструктивных элементов.
Все современные легковые автомобили оснащаются различными типами подвесок. Чаще всего спереди устанавливается подвеска МакФерсон (McPherson) или двухрычажная подвеска. Сзади может быть установлена зависимая, полузависимая и независимая подвеска с различным количеством рычагов.
Данный тип подвески был разработан еще в 1960 году инженером Эрлом Макферсоном, в честь которого и получила свое название. Она имеет несколько основных частей:
1.Стабилизатор поперечной устойчивости;
2.Рычаг;
3.Блок (состоит из телескопического амортизатора и пружинного элемента).
Телескопический амортизатор называют еще «качающаяся свеча», потому как к кузову он крепится посредством шарнира и может качаться, когда колесо двигается вниз и вверх. Если интересно, можете почитать, как проверить амортизаторы.
Данный тип подвески имеет свои недостатки (значительное изменение угла развала колес), но он чрезвычайно популярен благодаря демократичной цене, невысокой сложности и надежности.
Это одна из самых совершенных схем. Она представляет собой подвеску с 2-мя рычагами разной длины длинный нижний и короткий верхний), что гарантирует автомобилю прекрасную поперечную устойчивость на дороге и минимальный износ покрышек (поперечные перемещения всего колеса незначительны).
Это значит, что каждое отдельное колесо воспринимает ямы и бугры независимо от остальных, что позволяет сохранять максимально вертикальное отношение к дорожному покрытию и оптимальное сцепление покрышки с поверхностью дороги.
Данный тип подвески немного похож на двухрычажную схему, но он гораздо сложнее и совершеннее. Неудивительно, что к ней перекочевали и все достоинства предыдущего вида. Это набор из рычагов, сайлент-блоков и шарниров, которые крепятся на специальный подрамник. Большое количество шаровых опор и «сайлентов» обеспечивают не только завидную плавность хода, но и отлично гасят удары в случае резкого наезда на какое-либо препятствие, а еще они уменьшают уровень шума в салоне от колес.
При такой схеме достигается наилучшее сцепление покрышки с дорогой (любой тип покрытия), отточенная управляемость и плавность хода.
Достоинства «многорычажки»:
- малые неподрессоренные массы;
- оптимальная поворачиваемость колес;
- независимость каждого отдельного колеса от остальных;
- отдельные поперечные и продольные регулировки;
- хороший потенциал при условии полного привода.
Однако у многорычажной подвески есть один существенный недостаток – высокая стоимость. Хотя в последнее время наметился перелом: если раньше данный тип подвески применяли только на представительских авто, то сейчас ею оснащают даже машины гольф-класса.
Зависимые и независимые подвески:
Если коротко, то главное отличие зависимой подвески от независимой — это способность (у зависимой) подвески передавать перемещения от одного колеса оси на другое. Как видно на рисунке (а), наезд на неровность одним колесом приведет к изменению положения другого.
Типичным представителем такой конструкции может служить задняя подвеска с цилиндрическими винтовыми пружинами в качестве упругих элементов. Как пример можно привести конструкцию задних подвесок классических «Жигулей». В этом случае балка заднего моста «подвешивается» на двух винтовых пружинах и дополнительно крепится к кузову при помощи четырех продольных рычагов. Кроме этого, для улучшения управляемости, уменьшения крена кузова в поворотах и улучшения плавности хода устанавливается поперечная реактивная штанга.
Основным недостатком этого типа подвески является значительная масса балки заднего моста. Этот показатель особенно возрастает, когда мост выполняется ведущим: приходится «нагружать» балку весом картера главной передачи, редуктора и т.п. А приводит все это к возрастанию так называемых неподрессоренных масс, из-за чего значительно ухудшается плавность хода и появляются вибрации.
Данная схема получила широкое распространение и используется в конструкции большинства современных полноприводных машин. Она представляет из себя два
продольных рычага, которые в центре крепятся к поперечине. У такого типа подвески много преимуществ:
- Небольшие размеры;
- Малый вес;
- Простота в обслуживании и ремонте;
- Наилучшая кинематика колес;
- Значительное уменьшение неподрессоренных масс.
Минус этой конструкции только один – невозможность применения на заднеприводных автомобилях.
Передняя подвеска автомобиля на двойных поперечных рычагах обладает витыми пружинами, которые придают упругость, и двумя рычагами, которые крепятся к подрамнику или к раме. Подобная подвеску можно встретить и у крупно размерных седанов (бизнес- и представительского класса), а также у кроссоверов и внедорожников. Подобный тип подвески характеризуется низким износом, кроме алюминиевых составляющих. Так алюминиевые рычаги в таком типе подвесок устанавливают такие марки, как Audi и BMW. С одной стороны это дает низкий вес неподрессоренных масс и увеличивает комфорт, но износ таких деталей слишком велик в условиях наших плохих дорог.
Также переднюю подвеску на двойных рычагах зачастую в дорогих автомобилях оснащают пневматическими или гидропневматическими элементами, которые делают подвеску наиболее комфортной, но стоят такие комплектующие весьма дорога. По российским дорогам пневмобаллоны могут выходить не более 50 000 километров.
Передняя подвеска типа МакФерсон построена на основе амортизационной стойки и витой пружины вокруг нее. В итоге мы получаем довольно компактную подвеску, которая легко помещается под капотом маленьких автомобилей. Собственно и популярен данный тип подвески у автомобилей А, В и С классов.
Большие седаны и кроссоверы оснащаются независимой многорычажной задней подвеской. Такой тип может гарантировать отличный комфорт и плавность езды. Но данная подвеска легко «убивается» по ямам и ухабам, которых много на наших дорогах. При таком типе подвески также часто устанавливаются пневмоэлементы в дорогих моделях автомобилей.
В качестве задней подвески на легковых автомобилях чаще всего используется простая торсионно-рычажная полузависимая подвеска. Ее вы можете встретить под днищем большинства современных моделей небольших хэтчбеков и седанов. Она весьма проста, дешева и вынослива. Среди недостатков можно отметить высокую жесткость подвески, но с другой стороны это означает, что ее сложно будет «пробить». Такой подвеской оснащаются, Lada Granta, Renault Logan, Peugeot 301, Volkswagen Polo Sedan и другие их одноклассники.
В итоге, можно сделать вывод, что самая лучшая подвеска автомобиля для наших дорог – это типа МакФерсон спереди и торсионно-рычажная полузависимая подвеска сзади.
Назначение, устройство и виды подвесок автомобиля
Подвеска автомобиля представляет собой совокупность элементов, обеспечивающих упругую связь между кузовом (рамой) и колесами (мостами) автомобиля. Главным образом подвеска предназначена для снижения интенсивности вибрации и динамических нагрузок (ударов, толчков), действующих на человека, перевозимый груз или элементы конструкции автомобиля при его движении по неровной дороге. В то же время она должна обеспечивать постоянный контакт колеса с дорожной поверхностью и эффективно передавать ведущее усилие и тормозную силу без отклонения колес от соответствующего положения. Правильная работа подвески делает управление автомобилем комфортным и безопасным. Несмотря на кажущуюся простоту, подвеска является одной из важнейших систем современного автомобиля и за историю своего существования претерпела значительные изменения и усовершенствования.
- История появления
- Основные функции и характеристики подвески автомобиля
- Устройство подвески
- Классификация подвесок
- Зависимая подвеска
- Независимая подвеска
- Виды независимых подвесок
- МакФерсон
- Двухрычажная передняя подвеска
- Пневматическая подвеска
- Гидравлическая подвеска
- Спортивные независимые подвески
- Подвески типа push-rod и pull-rod
История появления
Попытки сделать передвижение транспортного средства мягче и комфортнее предпринимались еще в каретах. Изначально оси колес жестко крепились к корпусу, и каждая неровность дороги передавалась сидящим внутри пассажирам. Повысить уровень комфорта могли лишь мягкие подушки на сиденьях.
Зависимая подвеска с поперечным расположением рессоры
Первым способом создать упругую “прослойку” между колесами и кузовом кареты стало применение эллиптических рессор. Позже данное решение было позаимствовано и для автомобиля. Однако рессора уже стала полуэллиптической и могла устанавливаться поперечно. Автомобиль с такой подвеской плохо управлялся даже на небольшой скорости. Поэтому вскоре рессоры стали устанавливать продольно на каждое колесо.
Развитие автомобилестроения повлекло и эволюцию подвески. В настоящее время насчитываются десятки их разновидностей.
Основные функции и характеристики подвески автомобиля
У каждой подвески существуют свои особенности и рабочие качества, которые напрямую влияют на управляемость, комфорт и безопасность пассажиров. Однако любая подвеска вне зависимости от своего типа должна выполнять следующие функции:
- Поглощение ударов и толчков со стороны дороги для снижения нагрузок на кузов и повышения комфорта движения.
- Стабилизация автомобиля во время движения за счет обеспечения постоянного контакта шины колеса с дорожным покрытием и ограничения чрезмерных кренов кузова.
- Сохранение заданной геометрии перемещения и положения колес для сохранения точности рулевого управления во время движения и торможения.
Дрифт-кар с жесткой подвеской
Жесткая подвеска автомобиля подходит для динамичной езды, при которой требуется мгновенная и точная реакция на действия водителя. Она обеспечивает небольшой дорожный просвет, максимальную устойчивость, сопротивляемость крену и раскачиванию кузова. Применяется в основном на спортивных автомобилях.
Автомобиль класса “Люкс” с энергоемкой подвеской
В большинстве легковых авто применяется мягкая подвеска. Она максимально сглаживает неровности, однако делает автомобиль несколько валким и хуже управляемым. Если требуется регулируемая жесткость, на автомобиль монтируется винтовая подвеска. Она представляет собой стойки-амортизаторы с изменяемой силой натяжения пружины.
Внедорожник с длинноходной подвеской
Ход подвески – расстояние от крайнего верхнего положения колеса при сжатии до крайнего нижнего при вывешивании колес. Ход подвески во многом определяет “внедорожные” возможности автомобиля. Чем больше его величина, тем большее препятствие можно преодолеть без удара об ограничитель или без провисания ведущих колес.
Устройство подвески
Любая подвеска автомобиля состоит из следующих основных элементов:
- Упругое устройство – воспринимает нагрузки от неровностей дорожной поверхности. Виды: пружины, рессоры, торсионы, пневмоэлементы и т.д.
- Демпфирующее устройство – гасит колебания кузова при проезде через неровности. Виды: все типы амортизаторов.
- Направляющее устройство – обеспечивает заданное перемещение колеса относительно кузова. Виды: рычаги, поперечные и реактивные тяги, рессоры. Для изменения направления воздействия на демпфирующий элемент в спортивных подвесках pull-rod и push-rod применяются рокеры.
- Стабилизатор поперечной устойчивости – уменьшает поперечный крен кузова.
- Резино-металлические шарниры – обеспечивают упругое соединение элементов подвески с кузовом. Частично амортизируют, смягчают удары и вибрации. Виды: сайлент-блоки и втулки.
- Ограничители хода подвески – ограничивают ход подвески в крайних положениях.
Классификация подвесок
В основном подвески подразделяются на два больших типа: зависимые и независимые. Данная классификация определяется кинематической схемой направляющего устройства подвески.
Зависимая подвеска
Колеса жестко связаны посредством балки или неразрезного моста. Вертикальное положение пары колес относительно общей оси не изменяется, передние колеса – поворотные. Устройство задней подвески аналогичное. Бывает рессорная, пружинная или пневматическая. В случае установки пружин или пневмобаллонов необходимо применение специальных тяг для фиксирования мостов от перемещения.
Отличия зависимой и независимой подвески
- простая и надежная в эксплуатации;
- высокая грузоподъемность.
- плохая управляемость;
- плохая устойчивость на больших скоростях;
- меньшая комфортабельность.
Независимая подвеска
Колеса могут изменять вертикальное положение относительно друг друга, оставаясь в той же плоскости.
- хорошая управляемость;
- хорошая устойчивость автомобиля;
- большая комфортабельность.
- более дорогая и сложная конструкция;
- меньшая надежность при эксплуатации.
Полузависимая подвеска
Полузависимая подвеска или торсионная балка – это промежуточное решение между зависимой и независимой подвеской. Колеса по прежнему остаются связанными, однако существует возможность их небольшого перемещения относительно друг друга. Данное свойство обеспечивается за счет упругих свойств П-образной балки, соединяющей колеса. Такая подвеска в основном применяется в качестве задней подвески бюджетных автомобилей.
Виды независимых подвесок
МакФерсон
Подвеска McPherson – самая распространенная подвеска передней оси современных автомобилей. Нижний рычаг соединен со ступицей посредством шаровой опоры. В зависимости от его конфигурации может применяться продольная реактивная тяга. К ступичному узлу крепится амортизационная стойка с пружиной, ее верхняя опора закрепляется на кузове.
Двухрычажная передняя подвеска
Поперечная тяга, закрепленная на кузове и соединяющая оба рычага, является стабилизатором, противодействует крену автомобиля. Нижнее шаровое соединение и подшипник чашки стойки-амортизатора дают возможность для поворота колеса.
Детали задней подвески выполнены по тому же принципу, отличие заключается лишь в отсутствии возможности поворота колес. Нижний рычаг заменен на продольные и поперечные тяги, фиксирующие ступицу.
- простота конструкции;
- компактность;
- надежность;
- недорогая в производстве и ремонте.
- средняя управляемость.
Двухрычажная передняя подвеска
Более эффективная и сложная конструкция. Верхней точкой крепления ступицы выступает второй поперечный рычаг. В качестве упругого элемента может использоваться пружина или торсион. Задняя подвеска имеет аналогичное строение. Подобная схема подвески обеспечивает лучшую управляемость автомобиля.
Пневматическая подвеска
Роль пружин в этой подвеске выполняют пневмобаллоны со сжатым воздухом. При пневматической подвеске есть возможность регулировки высоты кузова. Также она улучшает показатели плавности хода. Используется на автомобилях класса люкс.
Гидравлическая подвеска
Амортизаторы подключены к единому замкнутому контуру с гидравлической жидкостью. Гидравлическая подвеска дает возможность регулировать жесткость и высоту дорожного просвета. При наличии в автомобиле управляющей электроники, а также функции адаптивной подвески она самостоятельно подстраивается под условия дороги и вождения.
Спортивные независимые подвески
Винтовая подвеска, или койловеры – амортизационные стойки с возможностью настройки жесткости прямо на автомобиле. Благодаря резьбовому соединению нижнего упора пружины можно регулировать ее высоту, а также величину дорожного просвета.
Подвески типа push-rod и pull-rod
Данные устройства разрабатывались для гоночных автомобилей с открытыми колесами. В основе – двухрычажная схема. Основная особенность заключается в том, что демпфирующие элементы расположены внутри кузова. Конструкция данных типов подвески очень схожа, отличие заключается лишь в расположении воспринимающих нагрузку элементов.
Различие спортивных подвесок push-rod и pull-rod
Спортивная подвеска push-rod: воспринимающий нагрузку элемент – толкатель, работает на сжатие.
Спортивная подвеска pull-rod: воспринимающий нагрузку элемент работает на растяжение.
Такая конструкция снижает центр тяжести и обеспечивает лучшую устойчивость автомобиля. Подвеска pull-rod имеет более низкий центр тяжести, чем push-rod. Однако на практике их общая эффективность примерно одинакова.