Зарядное устройство из компьютерного блока питания
Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.
У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.
Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.
Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.
Схема переделки компьютерного блока питания в зарядное устройство
Полная схема блока питания на микросхеме TL494, KA7500.
Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство
Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.
Схема подключения вольт амперметра к зарядному устройству
А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.
Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.
Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.
Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.
Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.
В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.
По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.
Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!
Зарядное устройство из импульсного БП
При использовании кислотных аккумуляторов в автомобиле или системах бесперебойного питания, необходима их зарядка, желательно в автоматическом режиме. Конечно, зарядка должна быть предусмотрена производителем устройства. Полностью обеспечивать необходимые режимы для продолжительной работы и хорошего состояния аккумулятора установленного в нем. Однако, бывают ситуации, когда возникает потребность дополнительного заряда и обслуживания батареи:
1. Такие ситуации возникают, в холодное время года, когда авто продолжительное время стоит в гараже и аккумулятор теряет заряд. Бывает, водитель не отключил потребителей и на следующий день авто не заводится.
2. В системах бесперебойного питания, ситуация значительно лучше. Устройство постоянно следит за зарядом аккумулятора, правильно его заряжает и не позволяет разряжаться больше, чем нужно. Пока в него не влезает пытливый ум, для улучшения характеристик.
У меня дело пошло по второму сценарию.
Как-то раз, зимой, ситуация с энергоснабжением резко ухудшилась. Вскоре стало ясно, что это надолго, и я достал бесперебойник. В нем стоял аккумулятор на 7 А/Ч, чего с трудом хватало на десятиватный светодиод освещения. Свет выключали на 2-4 часа, иногда не было электричества и 6 часов. Несколько раз включали электричество днем на два часа, но он не успевал заряжаться. Да и хотелось телевизор посмотреть, ведь выход 220 В. простаивал без дела.
Позже я купил БУ аккумулятор на 75 А/Ч, и озаботился его зарядкой. Нужно было заряжать его быстро и без присмотра людьми. Причем зарядное должно быть дешевым и хорошим.
Трансформатор отменил сразу, так как сетевое напряжение менялось в широких пределах, временами опускаясь до 140 В. У меня был в наличии недорогой импульсный китайский блок питания 12 В., 60 Вт, под названием “S 60-12”. Впрочем, приобрести такой не составит труда в интернет магазине или в местном магазине светотехники.
Блок имеет отличные основные характеристики:
Входное напряжение | 85 – 264 В. (AC) |
Выходное напряжение | 10,8 – 13,2 В. (DC) |
Выходной ток | 0 – 5 A |
После подключения к аккумулятору, начали возникать неприятности:
1. напряжения 13.2 В недостаточно для заряда
2. очень большой ток, когда на батарее низкое напряжение
3. разряд батареи в блок питания
Рассмотрим выходные цепи нашего блока, и определим что можно сделать для решения проблем:
1. Увеличить выходное напряжение можно зашунтировав резистор с управляющего вывода TL431 на общий провод (R15, SVR1)
2. Ток можно уменьшить, установив мощный токоограничительный резистор на выходе, или уменьшив выходное напряжение
3. Разряд батареи исключим последовательным диодом
У меня был слабый аккумулятор на 7 а/ч, для него разряд в блок питания (
50 мА) был существенным, и я установил последовательно с выходом ИБП связку диодов. Позже, от диодов отказался, когда перешел на большую батарею.
Для начала нужно увеличить выходное напряжение установкой параллельно R15 (см первый рисунок) резистора номиналом 12 кОм. После этого максимальное напряжение на выходе ИБП станет 16 В., без учета падения на диодах. Ток ограничительный резистор изготовил из толстой нихромовой проволоки. При отсутствии такой, можно купить готовый резистор. Напряжение следует выставить на выходных клеммах после диода, нагруженных на лампу освещения, для учета падения на диодной сборке. В таблице указано номинальное сопротивление (R) и максимальная рассеиваемая мощность (Pmax) резистора, для напряжения заряда 13,8 В. (Umax), минимального напряжения на аккумуляторе 11 В. (Umin) и максимального тока заряда 20% от ёмкости (с). Это безопасный режим, так как ток будет линейно падать, по мере заряда. Можно самостоятельно рассчитать сопротивление резистора:
R=(Umax-Umin)/0.2*c,
и максимальную мощность на нем:
Pmax=(Umax-Umin) 2 /R
Емкость батареи, А/Ч | Макс. ток А | Резистор Ом/Вт |
4,5 | 0,9 | 3,1/3 |
7 | 1,4 | 1,8/4 |
9 | 1,8 | 2/4 |
12 | 2,4 | 1,16/7 |
более 25 | 5 | 0,56/14 |
В целом система получилась надежная, не требующая обслуживания, но и с недостатками. Конечно резистор, который безбожно греется на больших токах. Долгая зарядка и невозможность полной зарядки.
После приобретения аккумулятора на 75 А/Ч и работы его в режиме постоянного просмотра телевизора (плюс усилитель звука 2*5Вт, тюнер Т2, модем с роутером, зарядка телефона/планшета, освещение), резистивная схема перестала успевать восстанавливать растраченный заряд.
Импульсный блок питания (ИБП) стабилизирует выходное напряжение с помощью управляемого стабилитрона SHR1 TL431, часть схемы выходных цепей показана на первом рисунке. Открытие этого стабилитрона происходит при превышении напряжения на управляющем выводе более 2,5В. Можно сказать, что в нормальном режиме, напряжение в этой точке всегда равно 2,5 В. Наша схема будет воздействовать на этот вывод, для изменения выходного напряжения. Следует учесть, что диапазон выходных напряжений этого ИБП ограничен. Не желательно повышать выходное напряжение более 16 В., а при понижении меньше 10 В. он отключается и предпринимает попытки запуска. Это значит, что аккумулятор, разряженный менее 10 В., это зарядное устройство зарядить не сможет. Так же, как и нельзя это ЗУ использовать в качестве лабораторного БП, по причине невозможности регулировки напряжения на выходе в широких пределах и стабилизации тока при коротком замыкании.
На скорую руку была собрана схема стабилизации тока и исключен диод. Конструкция и схема представлены ниже:
Схема представляет из себя усилитель постоянного тока и работает следующим образом:
Напряжение шунта, пропорциональное выходному току, усиливается дифференциальным усилителем IC1A, для исключения влияния паразитных потенциалов. Далее сигнал дополнительно усиливается вторым ОУ, с регулировкой усиления резистором R7. Когда напряжение на выходе IC1B станет достаточным для открытия диода D1 (
3 В.), через него и резистор R11, потечет ток. Потенциал в точке REG повысится и ИБП начнет снижать выходное напряжение. Выходной ток понизится, что приведет к снижению напряжения на шунте, на выходе IC1B, закрытию диода D1 и снижению потенциала в точке REG. Диод D1, также необходим для исключения влияния схемы, на режим стабилизации напряжения. Резистор R11 для ограничения тока в цепи, во избежание выхода из строя TL431, установленного в ИБП.
Настройка сводится в установлению выходного напряжения ИБП, подстроечным резистором SVR1 (см. первый рисунок). 13-13,8 В. для систем бесперебойного питания, или 14,4 В. для однократной зарядки автомобильного аккумулятора. Если диапазона регулировки резистора не хватает, следует доработать выходной делитель напряжения ИБП, как описано выше. После этого при подключенном аккумуляторе нужно настроить ток заряда подстроечным резистором R7.
У представленной схемы, отмечено несколько недостатков.
1. Невозможность оперативной регулировки тока
2. Плохая точность стабилизации тока, зависящая от его уровня и напряжения на выходе
3. Отсутствие индикации окончания процесса, для быстрого заряда автомобильных батарей
Схема отработала 4 месяца без неисправностей. Единственное обслуживание – это постоянно сгнивающие провода на клеммах аккумулятора (не надежно подключал)
Теперь, когда необходимость в аккумуляторном питании отпала и появилось свободное время, я решил усовершенствовать устройство. Была введена регулировка тока внешним переменным резистором. Добавлен усилитель ошибки для повышения точности. Введена светодиодная индикация режима работы.
ВНИМАНИЕ – допайка резистора увеличивающего выходное напряжение ИБП , в этом варианте схемы управления не требуется. Его функцию выполняет R10
В результате принципиальная схема усложнилась незначительно. Второй ОУ IC1B, работает в режиме интегратора/усилителя ошибки, сравнивая напряжение на выходе IC1A, пропорциональное выходному току с опорным напряжением в точке RES.2, установленным регулятором. На его выходе (выв. 7 IC1B), напряжение может находится в двух состояниях. Около нуля, когда ток не может достигнуть установленного резистором значения. И, около 3,5 В., когда произведен захват и стабилизация выходного тока, то есть идет заряд. Светодиод “Заряд” подключенный к точке LED индицирует состояние устройства. Параллельный стабилизатор на стабилитроне VR1 TL431 обеспечивает опорное напряжение для резистора регулятора тока. На его катоде напряжение должно составлять 2,5 В. Два резистора R7, R8 вместо одного, установлены для снижения рассеиваемой мощности на них.
Величина сопротивление шунта (Rsh) совместно с коэффициентом усиления IC1A (k) и напряжением в точке RES.1 (Vref), определяют максимальное значение тока зарядки (Imax) регулятора:
Imax=Vref/(k*Rsh).
Где коэффициент усиления дифференциального усилителя:
k=R5/R1, при R1=R2, R5=R3.
Rsh=0.1 Ом/3=0,0333 Ом,
k=1500 Ом/100 Ом=15,
Imax=2,5 В/(15*0,0333 Ом)=5 А.
После проверки правильности монтажа платы управления, нужно правильно подключить ее к ИБП. Я постарался изобразить наглядно, что бы не возникло проблем в подключении. Провод управления следует подключать к разобранному блоку, предварительно отключив его от сети 220 В. Перед включением необходимо установить кожух БП на штатное место и настроить резистор R10 в максимальное большое сопротивление. Включаем. настраиваем выходное напряжение ИБП, для работы в составе устройства бесперебойного питания, при разомкнутых контактах кнопки “Режим” , резистором SVR1 (см. первый рисунок) на уровне 13-13,8 В. При нажатии кнопки “Режим”, следует установить выходное напряжение 14,4 В. резистором R10, для однократной зарядки аккумулятора. Проверяем напряжение на крайних выводах резистора регулировки, оно должно составлять 2.5 В. Подключив исправный аккумулятор проверим регулировку выходного тока. Максимальный ток не должен превышать 5 А. для данного ИБП. Если ток не достаточный нужно изменить усиление усилителя на IC1A. Впрочем после этого усилителя можно поставить подстроечный резистор на общий провод и движок этого резистора подключить к 5 выв. IC1. для подстройки максимума. Минимум будет около нуля ампер и в подстройке не нуждается. Для проверки выходного тока можно использовать мощный резистор или спираль от электроплитки, но стабилизация тока будет происходить только в небольшом диапазоне напряжений от приблизительно 10 В. до 13 или 14.4 В., в зависимости от настроек переключателя.
Зарядное устройство имеет особенности:
– При зарядке до 14.4 В. необходимо наблюдать за состоянием светодиода “Заряд”. По окончании заряда он потухнет, и следует отключить ЗУ от батареи.
– В случае неисправности аккумулятора и напряжении на нем менее 10 В., светодиод будет мигать, а заряда не будет.
– При коротком замыкании выходных клемм светодиодной индикации не будет, но в ИБП сработает внутренняя защита.
– От переполюсовки клемм аккумулятора данное ЗУ защиты не имеет и желательно на выходе установить предохранитель 5 А.
Конструкция блока управления выполнена на макетной печатной плате выводными компонентами. В схеме использованы широко распространенные элементы. Вместо стабилитрона VR1 можно использовать обыкновенный стабилитрон на напряжение 3,3-5,1 В. (Vref), изменив коэфф. усиления дифф. усилителя по вышеприведенной формуле. Светодиод ультраяркий красный в прозрачном корпусе, такие при малом токе хорошо светят. Переменный резистор регулятора любого удобного типа с номиналом 1-10 кОм.
В качестве токового шунта я использовал резисторы 0,1 Ом 1 Вт., они достаточно распространены и не дефицитны. Подключение к шунту производилось, как показано на рисунке и фотографии. Можно использовать готовый шунт или резисторы низкого сопротивления 0,03-0,01 Ом мощностью 3 и более ватт, например MPR-5W, BPR56. В крайнем случае можно использовать моток медного провода низкого сечения, но параметры будут меняться с прогревом.
Автомобильное зарядное устройство из компьютерного БП АТХ
Как известно, при кратковременных поездках в городе автомобильный аккумулятор не успевает заряжаться, постоянный недозаряд приводит к сульфатации пластин и к сокращению службы самого аккумулятора. При эксплуатации авто только в городском режиме советуют раз в 3-4 месяца полностью заряжать автомобильный аккумулятор штатным зарядным устройством. Да вот беда – нормальное зарядное есть не у всех, денег на него жалко, а заряжать аккумулятор желательно регулярно. Для тех, у кого нет лишних 30-50 баксов на автомобильную зарядку от сети, а иметь оную уж очень хочется, и предназначена эта статья.
Очень неплохую вещь можно сделать из обычного компьютерного блока питания АТХ. Компьютерный блок питания ваще шикарная штука, ибо предназначен для того, чтобы молотить круглосуточно, запитывая материнку, процессор, винчестер, да еще и выдавать при этом довольно солидные токи. В самих компьютерах БП периодически мрут, ибо сделаны в большинстве своем китайцами, а эти ребята привыкли экономить на всем – занижать параметры конденсаторов, ставить резисторы меньшей мощности, и вообще за это им огромное спасибо, ибо благодаря их стараниям у меня, к примеру, нет недостатка в компьютерных блоках питания для экспериментов.
Достать компьютерный БП проще простого – нужно пойти в любой компьютерный магазин, у которого есть свой сервисный центр, и купить за очень недорого «дохлый» блок питания. Как правило у любого сервисного центра есть здоровенная коробка этих самых БП, ибо чинить их экономически невыгодно – компьютерные магазины, вообще-то зарабатывают не на ремонте БП, а на их продаже Так что если подойти к директору, прикинуться бедным студентом, рассказать жалобную историю, что мол детали дорогие, а денег нет, то думаю за каких-то десять баксов можно притащить домой солидную кучу блоков питания.
Скажу сразу – не всякий блок питания подойдет для переделки. Внутри блока питания стоит микросхема ШИМ-контроллера, которая управляет полумостовым преобразователем. Нас интересует блок питания с установленным ШИМ TL 494 (аналоги KA7500, DBL494, M5T494 и тому подобное). На этой микросхеме с небольшими изменениями можно получить не только автомобильное зарядное устройство, но и полноценный лабораторный блок питания с регулируемым стабилизированным напряжением и ограничением тока.
Из блоков питания с установленными ШИМ SG6105 , АТ2003 и т.д. получить блок питания с регулируемыми параметрами не получится, максимум что из него можно выжать – автомобильное зарядное 14.2-14.8В/3-6 А.
В этой статье мы рассмотрим переделку БП на самой распространенной ШИМ TL 494. Структурная схема ШИМ показана на рисунке:
“Выводы 1 и 2 – неинвертирующего и инвертирующего входов усилителя ошибки 1; вывод 3 – вход «обратной связи»; вывод 4 – вход регулировки «мертвого времени» (время, в течение которого закрыты оба выходных транзистора, причем независимо от величины тока нагрузки); выводы 5 и 6 – для подключения внешних элементов ко встроенному генератору пилообразного напряжения; вывод 7 – общий; выводы 8 и 9 – коллектор и эмиттер первого транзистора; выводы 11 и 10 – коллектор и эмиттер второго транзистора; вывод 12 – питание; вывод 13 – выбор режима работы (возможна работа в одно- или двухтактном режиме: если на этом выводе присутствует логическая «1″ (+2,4…+5 В), то транзисторы открываются поочередно (двухтактный режим работы); если на выводе будет «О» (0…0.4 В), то это однотактный режим, при этом транзисторы могут быть включены параллельно для увеличения выходного тока); вывод 14 – выход опорного напряжения (+5 В); выводы 15 и 16 – неинвертирующий и инвертирующий входы усилителя ошибки 2.
ШИМ-контроллер работает на фиксированной частоте и содержит встроенный генератор пилообразного напряжения, который требует для установки частоты всего два внешних компонента: резистора Rt и конденсатора Ct. При этом частота генерации будет равна f=1,1/RtCt.”
После того, как БП принесли домой, разобрали, прошлись кисточкой и пропылесосили, нужно убедиться, что входные цепи, а также источник питания дежурного режима (так называемая дежурка) работают и выдают на ШИМ питание.
Для начала проверяем работоспособность источника дежурного питания. Дежурка работает всегда, когда на блок питания подано 220В и включен тублер. Она выдает два напряжения – одно на питание ШИМ, другое +5Vsb (Standbye). Сигнал Standbye – фиолетовый провод большого разъема питания, 9 контакт.
При включенном в сеть БП на 9 контакте должно быть 5В. Если нет, ищем неисправность в цепях дежурки. Если есть – проверяем наличие питания на выводе 12 ШИМ. Микросхема запускается при подаче на вывод 12 напряжения от 7 до 41В (в среднем дежурка выдает 12-15В).
Схема дежурного источника питания выглядит примерно так:
Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Чаще всего высыхают электролитические конденсаторы, теряют емкость конденсаторы обвязки. Прозваниваем транзистор, диоды, первичную и вторичную обмотки трансформатора на предмет КЗ.
Если дежурка работает, а ШИМ не запускается, проверяем работоспособность ШИМ-преобразователя. Для этого необходимо иметь стабилизированный источник питания +12В. Подключаем источник к выводу 12 ШИМ, вывод 4 закорачиваем на землю. При наличии осциллографа можно стать на ноги 8, 11 и посмотреть сигналы на транзисторы раскачки, а на ноге 5 можно наблюдать «пилу» работающего внутреннего генератора. Если осциллографа нет, то мультиметром проверяем наличие +5В на выводе 14 – если есть, то внутренний источник опорного напряжения работает.
Очень часто случается, что при закорачивании вывода 4 ШИМ на землю БП АТХ начинает работать. В этом случае причина неисправности кроется в цепях защиты от перегрузок и цепях формирования служебных сигналов. Так как в дальнейшем эти цепи защиты нам будут не нужны, и от +3.3/+5В мы откажемся вообще, проверка цепей защиты здесь рассматриваться не будет. Должен заметить, что включение БП АТХ происходит при замыкании сигнала PS_ON на землю (зеленый провод, 16 контакт). Так как этот сигнал относится к цепям формирования служебных сигналов, он нас не интересует – мы запустим БП без него.
Наша основная задача – запустить блок питания и получить на выходе +12В, с которым мы и будем в дальнейшем работать. Простейшая схема компьютерного блока питания на ШИМ TL494 (аналог КА7500) показана на рисунке ниже:
Схема БП состоит из следующих блоков:
1. Сетевой фильтр и выпрямитель.
2. Схема измерений перенапряжений, она же схема защиты и формирования служебных сигналов.
3. Дежурный источник питания.
4. Усилитель мощности.
5. Выпрямитель для напряжения +12В вторичной цепи источника питания.
6. Схема промежуточного усилителя.
Микросхему ШИМ легко найти невооруженным взглядом
Допустим ШИМ работает, но на выходе напряжений нет. Проверяем цепи усилителя мощности и силовые транзисторы.
Все осциллограммы снимать относительно эмиттера. Основные неисправности – обрывы резисторов в цепях базы, потеря емкости конденсаторами или их пробой, межвитковое КЗ в обмотках трансформатора, пробой высоковольтных транзисторов.
Итак, наша основная задача – получить на выходе +12В. Условно будем полагать, что с этой задачей мы успешно справились, ибо разбор конструкции БП АТХ и принципы его ремонта не входит в нашу первоочередную задачу. Выходная часть с выпрямителем и фильтрами питания сделаны по примерно одной и той же схеме:
Так как напряжения +3.3В, +5В, – 5В и -12В нам не нужны, можно смело выпаивать все компоненты на выходе, отвечающие за эти напряжения. Оставляем выходной дроссель, электролитический конденсатор в цепи +12В заменяем на 2200 мкФ 50В (изначально там стоит конденсатор, расчитанный на рабочее напряжение 16В, в случае переделки БП под выходное напряжение 25В он взорвется). Также не лишним будет заменить сборку диодов Шоттки в цепи +12В на другую, с большим прямым током. Можно заменить эту сборку на ту, которая стояла в цепи +5В или поставить сборку диодов Шоттки на более высокий ток, скажем, 10TQ045 с прямым током 10А или MBR1545CT с прямым током 15А. Заодно выпаиваем со схемы весь жгут проводов – он нам больше не понадобится.
После выпаивания запасных компонентов должно получиться примерно следующее:
Не бойтесь выпаивать все лишнее – для запуска ШИМ TL494 нужно всего 4 сопротивления и один конденсатор (не считая пары переменных резисторов). Они уже есть на схеме, даже если Вы выпаяете лишнее, потом ориентируясь по печатным проводникам, можно будет вернуть нужные компоненты (3 сопротивления и 1 емкость) на место. Нижняя микросхема LM339 – счетверенный компаратор, на котором собрана схема защиты, также не нужна. Ее можно смело выпаивать или выкусывать, я обломался
На плате оставляем только дроссель (ниже радиатора), и заменяем конденсатор в цепи +12В на 2200 мкФ 35В – изначально там стоит конденсатор на напряжение 16В.
При переделке компьютерного БП в лабораторный источник питания я опирался вот на эту схему, называемую в народе «схема итальянца» (кликабельно для увеличения):
Или же можно воспользоваться схемой попроще:
Здесь показана минимальная обвязка ШИМ TL494 для того, чтобы микросхема заработала. Так как раньше блок питания уже как-то работал, скорей всего эта обвязка уже присутствует в схеме, нужно только изменить подключение выводов 1, 2, 4, 15 и 16. На контакт 12 подается напряжение с дежурного источника питания. Контакт 4 садится на землю. Можно проследить дорожку и выпаять диод, через который на контакт 4 подается сигнал ошибки со схемы защиты. Схема защиты с сигналом PS_ON нам уже тоже не нужна, поэтому ее можно смело выковыривать из платы, вместо нее мы соберем схему ограничения тока.
* Прослеживаем по дорожкам выводы 15 и 16, отпаиваем от них компоненты и соединяем согласно схеме.
* Прослеживаем по дорожкам распайку выводов 1, 2, отпаиваем от них компоненты и соединяем согласно схеме.
Кроме этого, нам понадобится два переменных резистора нужного номинала, и шунт 0.1-0.0.1. Шунт я сделал с двух «керамических» сопротивлений номиналом 0.2 Ом, соединив их параллельно. На самом деле это не керамические сопротивления, а обычные резисторы, зацементированные в керамику, поэтому при нагреве их номинал «уплывает», желательно в качестве шунта применять что-то типа старых советских проволочных резисторов С5-16. Вот что вышло в итоге:
Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0.1-0.01 Ом. Ну и конечно мало-мальские познания в электронике и большое желание замутить что-то такое на зависть всем пацанам из соседних гаражей . Что в танке главное, знаете? Правильно, плюс небольшая внимательность.
В принципе уже после этого напряжение на выходе можно менять в пределах от 2.5 до 25В, а ограничение тока можно выставлять от 0.5 до 15 А. Выставив однажды сопротивлением 14.2-14.6В и ограничив ток в пределах 0.1С от емкости заряжаемой батареи (для батареи 50А*ч ток заряда должен быть равен 5А), мы получим полноценное зарядное устройство. Так как схема БП АТХ является по-сути стабилизатором напряжения, то она будет поддерживать заданное раннее напряжение, а вот ток по мере заряда аккумулятора будет падать. И это является очень большим преимуществом этого зарядного устройства по сравнению с остальными зарядными, у которых стабилизированный ток заряда – нет риска что аккумулятор «закипит». Аккумулятор можно бесконечно долго держать подключенным к этому зарядному устройству – по мере набора емкости ток заряда будет снижаться вплоть до ноля, фактически переходя в заряд «капельным режимом», то есть поддерживая емкость аккумулятора неограниченное время.
Но так как такое зарядное устройство будет использоваться раз в два-три месяца, если не раз в год, а остальное время оно просто будет валяться в гараже, есть очень большой соблазн потратить еще один день, и сделать из него полноценный лабораторный блок питания. Понадобится только две измерительные головки – вольтметр и амперметр. Можно прикрутить китайский блок 2 в 1, амперметр + вольтметр. Либо для пущей убедительности возможна установка аналоговых вольтметра и амперметра. Амперметр нужен обязательно с шунтом на тот предел, который указан на шкале. Иначе замучаетесь подбирать отрезок провода необходимого сопротивления. В моем случае манганиновый шунт уже встроен в амперметр.
Вырезав из текстолита лицевую панель, профрезеровав отверстия под амперметр, вольтметр, регуляторы и прочее, я собрал все воедино.
Можно пойти другим путем, и сделать переднюю панель скажем из нержавейки, порезав ее лазером.
В результате получился полноценный блок питания с пределами 25В/10А (ток фактически больше, порядка 15А)
Работа блока на нагрузку в виде автомобильной лампы.
Вид блока со стрелочными индикаторами
Штатный вентилятор нужно подключить к бывшему выходу +12В, развернув его так, чтобы он дул внутрь блока, охлаждая радиаторы силовых транзисторов и выходных диодов. У меня заодно он обдувает и шунт. При этом чем выше напряжение, тем больше скорость вращения вентилятора. Не пытайтесь изменить направление вращения, изменяя полярность питания – внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет
ВНИМАНИЕ! Схема фактически не содержит защиты от короткого замыкания, вместо нее на одном из компараторов ошибки ШИМ TL494 собрано ограничение выходного тока. Это значит, что если замкнуть накоротко выходы источника питания, ток короткого замыкания в цепях будет равен лишь выставленному ранее ограничению тока! Блок питания достаточно мощный, если ограничение тока будет выставлено на максимум, он будет «вдувать» в нагрузку (которая по сути шунт 0.1 Ом) максимальный ток. Помните об этом, если Вы не хотите, чтобы из вашего блока ушел волшебный дым, на котором работает вся электроника.
Для избежания подобных казусов нагрузка в моем случае подключается через предохранитель на 15А. Есть хотя бы один шанс из ста что при КЗ предохранитель успеет сгореть ранше, чем сгорит что-то в схеме. К сожалению, происходит ровно наоборот – схема вылетает, защитив собой предохранитель
ВНИМАНИЕ ШТРИХ! При подключении к аккумулятору строго соблюдать полярность! В противном случае все тот же волшебный дым покинет какой-то компонент схемы, и он больше никогда не будет работать.
Порядок зарядки аккумулятора. На холостом ходу выставить регулятором тока минимальное ограничение тока (крайнее левое или крайнее правое положение сопротивления R3 согласно вышеприведенной схеме, зависящее (положение) от распайки резистора), регулятором напряжения выставить напряжение 14.2-14.6В для обычных аккумуляторов и 14.8-15.6 для кальциевых. Отключить источник питания от сети. Подключить аккумулятор, соблюдая полярность. Включить источник питания и регулятором тока выставить нужный ток заряда.
При этом напряжение немного упадет до какого-то значения, которое зависит от внутреннего сопротивления аккумулятора, но стабилизатор тока будет держать нужный ток. По мере набора аккумулятором емкости ток заряда будет падать, а напряжение вернется до установленного ранее значения.
Во избежании взрыва подключать и отключать аккумулятор только при выключенном источнике питания.
Примечание. Длительная нагрузка (порядка 10 часов) источника питания двумя параллельными автомобильными лампами 12В 55Вт при напряжении 14.6В и суммарном токе потребления почти 8А показало, что при работающем обдуве какого-то сильно критичного нагрева компонентов внутри блока питания нет.
Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами:
1. Фантастическая живучесть и работоспособность. Компьютерные импульсные блоки питания с принудительным охлаждением имеют КПД порядка 80-85%, диапазон входного напряжения 160-240В, время наработки на отказ порядка 50 тыс. часов. Другими словами, блок питания предназначен для того, чтобы сутками молотить включенным. Так как используется только напряжение +12в, то выходной трансформатор нагружен даже меньше, чем если бы использовались также +5В и +3.3В, ибо их обмотки намотаны на одном сердечнике выходного трансформатора.
2. Стабилизация выходного напряжения в пределах ±5% для значения +12В
3. Ограничение тока, из чего следует, что зарядное такого типа смело можно применять для заряда необслуживаемых гелиевых аккумуляторов – риск «закипятить» аккумулятор отсутствует. Последний возьмет столько тока, сколько ему нужно.
4. Возможность заряжать аккумулятор не отключая его от автомобиля.
5. Полноценный блок питания с широкими пределами регулирования для решения повседневных задач.
Недостаток – время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого. Это компенсируется невозможностью довести аккумулятор до «кипения», если бы заряжать его постоянным стабильным током.
Сделаем зарядное устройство из блока питания компьютера
Многие люди, приобретая новую компьютерную технику, выкидывают на помойку свой старый системный блок. Это довольно недальновидно, ведь в нем могут находиться еще работоспособные комплектующие, которые можно использовать для других целей. В частности, речь идет о блоке питания компьютера, из которого можно сделать зарядное устройство для АКБ автомобиля.
Стоит отметить, что затраты на изготовление своими руками минимальны, что позволяет существенно сэкономить свои денежные средства.
Зарядка из БП компьютера
Блок питания компьютера представляет собой импульсный преобразователь напряжения, соответственно +5, +12, -12, -5 В. Путем определенных манипуляций, можно из такого БП сделать своими руками вполне рабочее зарядное устройство для своего автомобиля. Вообще, зарядки бывают двух типов:
Зарядные устройства со множеством опций (пуск двигателя, тренировка, подзарядка и т.д.).
Устройство для подзарядки АКБ — подобные зарядки нужны для автомобилей, у которых небольшой километраж между пробегами.
Нас интересует именно второй тип зарядных устройств, потому что большинство транспортных средств эксплуатируются короткими пробегами, т.е. автомобиль завели, проехали определенное расстояние, а затем заглушили. Подобная эксплуатация приводит к тому, что у аккумуляторной батареи автомобиля довольно быстро заканчивается заряд, что особенно характерно для зимнего времени. Поэтому и оказываются востребованными подобные стационарные агрегаты, с помощью которых можно очень оперативно зарядить АКБ, вернув его в рабочее состояние. Сама зарядка осуществляется при помощи тока порядка 5 Ампер, а напряжение на клеммах колеблется от 14 до 14,3 В. Мощность зарядки, которая рассчитывается путем умножения значений напряжения и тока, может быть обеспечена из блока питания компьютера, ведь средняя мощность его составляет порядка 300-350 Вт.
Переделка компьютерного БП в зарядное устройство
Процесс переделки
Поэтому, нужно внимательным образом отнестись к элементарным нормам техники безопасности в работе с данным устройством.
Итак, можно приступать к работе. Берем имеющийся у вас блок питания необходимой мощности (в нашем случае мы рассматривает модель PSC200, мощность которого составляет 200 Вт). Опишем поэтапно весь алгоритм действий:
- Сначала нужно снять крышку с блока питания компьютера, открутив несколько болтов. Далее нужно найти сердечник импульсного трансформатора.
- Далее нужно измерить этот сердечник, а полученное значение умножить на два. Данное значение индивидуально, на примере рассматриваемого устройства получилось значение 0,94 см 2 . На практике известно, что 1 см 2 сердечника способен рассеять порядка 100 Вт мощности, т.е. наш блок вполне подходит (из расчета — 14 В * 5 А = 60 Вт необходимо для зарядки АКБ).
- В блоках питания используется довольно стандартная микросхема TL494, характерная для многих моделей.
Нам нужны только элементы цепи +12 В. Поэтому все остальное нужно просто выпаять. Для удобства приведены две схемы — на одном общий вид микросхемы, а на втором красным цветом выделены цепи, которые необходимо выпаять:
Иными словами, нас не интересуют цепи -5, +5, -12 В, а также схема сигнала запуска (Power Good) и переключатель напряжения 110/220 В. Чтобы было еще нагляднее, выделим интересующий нас кусок:
R43 и R44 являются резисторами опорного типа. Величину R43 можно корректировать, что позволяет добиться изменения величины выходного напряжения на цепи +12 В. Данный резистор нужно заменить на постоянный резистор R431 и переменный R432. Выходное напряжение можно корректировать в пределах 10-14,3 В, можно корректировать силу тока, проходящего через аккумуляторную батарею.
Дополнительно предлагаем посмотреть переделку ATX блока питания в зарядное устройство
Также был заменен конденсатор, находящийся на выходе выпрямителя цепи +12 В. На его место был установлен конденсатор с более высоким показателем напряжения (в нашем случае использовался C9).
Резистор, находящийся рядом с вентилятором обдува, необходимо заменить на аналогичный, но обладающий чуть большим сопротивлением.
Сам вентилятор нужно расположить таким образом, чтобы воздух от него поступал внутрь БП, а не наружу, как это было ранее. Для этого, разворачиваем его на 180 градусов.
Также необходимо удалить дорожки, которые соединяют отверстия крепления платы к шасси и цепи массы.
Стоит отметить, что получившееся зарядное устройство из блока питания нужно включать в сеть переменного тока через обыкновенную лампу накаливания мощностью от 40 до 100 Вт.
Это нужно делать на этапе сборки и проверки работоспособности, потом необходимость в этом отпадает. Нужно это для того, чтобы в нашем БП ничего не перегорело от скачков напряжения.
Осуществляя подбор номиналов R431 и R432, необходимо отслеживать напряжение в цепи Uпит — оно не должно превышать 35 В. Оптимальными показателями, в нашем случае, будет выходное напряжение в 14,3 В при незначительном сопротивлении резистора R432.
Еще один вариант переделки
Некоторые нюансы
Чтобы видеть уровень зарядки наглядно, можно установить в данное зарядное устройство индикаторы стрелочного типа, либо цифровые. В нашем случае, были использованы два приборчика со стрелками от старых магнитофонов. Первый будет показывать уровень зарядного тока, а второй — показатель напряжения на клеммах аккумуляторной батареи.
В принципе, на этом процесс сборки завершен. Некоторые умельцы дополняют его прочими украшениями (светодиодные индикаторы, дополнительный корпус с ручками и т.д.), но это совсем необязательно, ведь главная цель данного устройства — заряжать АКБ автомобиля, с чем он успешно и справляется.
Целесообразность изготовления своими руками зарядки из блока питания компьютера вряд ли можно подвергнуть сомнению, ведь денежные затраты, в данном случае, практически отсутствуют.
Единственный нюанс заключается в том, что самостоятельная сборка из БП доступна далеко не каждому, ведь надо неплохо разбираться в электронике, чтобы грамотно и последовательно выполнить всю сборку.
Как из старого блока питания компьютера сделать зарядное устройство
При модернизации компьютеров блок питания в большинстве случаев подлежит замене – он уже не тянет новые нагрузки. В итоге вполне исправный источник питающего напряжения ПК остается не у дел. А у тех, кто занимается апгрейдом регулярно, скапливаются горы таких устройств без дальнейшей перспективы установки в компьютеры – мало кому сейчас нужен источник мощностью в 250-350 ватт.
Для таких БП можно найти другое применение – например, в качестве зарядного устройства для аккумуляторов. Переделка в большинстве случаев минимальна, и ее можно сделать своими руками.
Схема ЗУ
Если рассмотреть структурную схему импульсного блока питания стандарта ATX, то можно обнаружить, что это практически готовое зарядное устройство. Надо лишь удалить из нее все излишнее и добавить несложные цепи регулировки. В зарядном устройстве не понадобятся:
- схема защиты и выключения;
- выпрямители и фильтры всех напряжений, кроме канала+12 вольт.
Источник дежурного напряжения, в принципе, не нужен, но от него питается микросхема ШИМ, его надо оставить хотя бы частично. Заряжать аккумуляторы надо в режимах стабилизации напряжения или тока, поэтому придется добавить соответствующие цепи для установки необходимых уровней.
Блок питания стандарта AT содержит еще меньше избыточных цепей (в нем нет источника дежурного напряжения), но его найти сейчас не так просто.
Самостоятельное изготовление устройства
Самостоятельное изготовление зарядного устройства надо начать с поиска принципиальной схемы на имеющийся блок питания. В этом поможет интернет. Чем точнее будет совпадение реального устройства со схемой, тем лучше. Далее надо определить, какого типа ЗУ нужно (со стабилизацией напряжения или дополнительно со стабилизацией тока). После этого можно приступать к анализу работы схемы и планировать переделки.
Подготовка радиодеталей
Радиодеталей понадобится по минимуму:
- два потенциометра для регулировки тока и напряжения (продаются в любом магазине или в интернете), а если режим стабилизации тока не планируется, хватит и одного;
- несколько выводных (true hole) резисторов мощностью 0,25 Вт (возможно, найдутся среди удаляемых элементов);
- две клеммы для присоединения проводов достаточного сечения (желательно, красного и черного цвета);
- провода для соединений.
Еще понадобятся вольтметр и амперметр для индикации выходных параметров. Можно применить стрелочные, можно современные цифровые (но не стоит уповать на их высокую точность).
Простой зарядник для автомобильных аккумуляторов 12 вольт
Свинцовые автомобильные аккумуляторы заряжаются в режиме постоянного напряжения (ток при этом падает). Поэтому возникает мысль изготовить зарядное устройство для такой АКБ из компьютерного блока питания. Для исправной батареи емкостью 60 А*ч нормальный ток заряда составляет 3-6 ампера, для глубоко разряженной – до 10 А при стабильном напряжении около 14 вольт. Такой ток может обеспечить даже относительно маломощный БП от компьютера (от 250 Вт).
При всем разнообразии схем исполнения БП стандарта ATX, широко распространены блоки питания на микросхемах – формирователях ШИМ TL494 (или аналогах). Пример переделки в зарядное устройство есть смысл рассмотреть для блоков, построенных на этом электронном компоненте.
В первую очередь надо удалить все лишние жгуты с разъемами. оставив один-два желтых провода (+12 вольт) и один-два черных (0 вольт).
Следующим шагом следует отключить цепи сигнала Power_ON, по которым материнская плата управляет БП. Для этого надо перерезать дорожку, идущую к выводам 13-14-15 микросхемы. После этого схема будет запускаться при подаче сетевого напряжения 220 вольт. Другой вариант – припаять перемычку между контактной площадкой зеленого провода и общей шиной.
Если есть желание, можно полностью удалить часть схемы, обведенную голубой линией. Это немного повысит энергоэффективность зарядника за счет снижения расхода на питание участка схемы и несколько улучшит тепловой режим внутри корпуса БП. Также можно удалить элементы выпрямителей ненужных напряжений. При удалении можно ориентироваться на цвет проводов из таблицы.
Цвет провода | Напряжение, В |
---|---|
Черный | 0 В (земля, общий провод) |
Красный | +5 |
Оранжевый | +3,3 |
Желтый | +12 |
Белый | -5 |
Синий | -12 |
Зеленый | +5 Power_ON |
Серый | +5 PG |
Фиолетовый | +5 Stand by (дежурное напряжение) |
Коричневый | +3,3 Sense |
Второй этап переделки – создание возможности регулировки выходного напряжения. Для компьютера надо иметь на выходе 12 вольт, для зарядного устройства побольше – до 14,5 вольт минимум. А если регулировать выходной уровень вниз, можно будет заряжать и шестивольтовые аккумуляторы. Для этого надо удалить лишние резисторы, подключенные к выводу 1 микросхемы, и установить вместо них потенциометр на 100 кОм. После этого добавится возможность настраивать уровень выходного напряжения примерно от 6 до 16 вольт, чего хватит для большинства случаев, с которыми можно столкнуться на практике.
Самый «дорогостоящий» этап (с учетом того, что все предыдущие действия практически не требуют материальных затрат) – добавление амперметра и вольтметра. Удобно использовать цифровой блок измерения тока-напряжения.
Органы регулировки и измерения надо вывести на панель получившегося зарядника, и тут дизайн ограничен только собственной фантазией. Также надо найти место для размещения клемм для подключения заряжаемого аккумулятора.
Важно! Схемы контроля уровня заряда данное устройство не имеет. Перед началом зарядки надо выставить напряжение около 14 вольт и проконтролировать зарядный ток. Если он велик (у глубоко разряженной АКБ), надо несколько уменьшить напряжение до получения тока в 6-7 ампер. По мере зарядки ток упадет, напряжение можно вновь повысить до 14-14,5 вольт. При падении зарядного тока до примерно 0,1..0,15 А, аккумулятор полностью зарядится и процедуру надо прекратить.
Зарядное устройство с регулировкой тока
Некоторые типы аккумуляторов требуют зарядки стабильным током. Такой зарядник тоже можно сделать из блока питания компьютера. Надо лишь ввести дополнительные цепи регулировки и измерения тока. В первую очередь надо оторвать средний вывод импульсного трансформатора от земли и в разрыв включить измерительный шунт – сопротивление, замеряя напряжение на котором, можно вычислить ток. Шунт можно взять от стрелочного амперметра. Лучше найти сопротивление в виде спирали – для него проще выделить место при тесном монтаже. Можно попробовать в качестве шунта использовать печатный проводник между средним выводом и общей шиной, но тут успех зависит от топологии разводки платы.
Дальше надо очистить от посторонних элементов ножки 15 и 16 микросхемы, и 16 вывод соединить с общим проводом. Верхний по схеме вывод шунта (средний вывод трансформатора) подключается к ноге 15 через резистор около 270 Ом (окончательный номинал подбирается при наладке). Для регулировки к тому же выводу 15 подключается цепь из резистора 10 кОм и потенциометра (от 1..2 до 20 кОм, какой будет под рукой). В итоге получится зарядное устройство с регулировкой напряжения и максимального тока, которое можно во многих случаях применять и в качестве лабораторного источника питания.
Тестирование переделки
До включения в сеть к зарядному устройству надо подключить нагрузку. На холостом ходу импульсный источник включать, а тем более тестировать, не рекомендуется. В качестве нагрузки удобно применять автомобильные лампы накаливания на напряжение 12 вольт и потребную мощность (для первоначальной проверки устройство можно нагрузить током 10..50% от номинала). Вместо лампочек можно применить магазин сопротивлений.
Дальше надо подготовить схему для включения источника в сеть. Для этого в разрыв одного сетевого провода надо включить лампу накаливания (подобно предохранителю). Если переделка БП прошла успешно, то при включении в сеть лампа гореть не будет или будет тускло светиться. Можно продолжать проверку дальше – лампа влияния не окажет. Если нить ярко светится, значит, в БП есть проблема, и ее надо найти и устранить. Лампа в этом случае ограничивает ток – автомат не выбьет.
Если первое включение прошло нормально, можно проверить пределы регулировки напряжения. Это можно сделать с помощью встроенного вольтметра, а еще лучше дополнительно проконтролировать напряжение мультиметром прямо на нагрузке. Если границы уровней регулирования не устраивают, можно подобрать сопротивление потенциометра до достижения нужного результата. Далее подключая больше или меньше лампочек к выходу в параллель, можно проверить границы регулировки тока. Их уточняют с помощью подбора резистора в цепи измерения (начальное значение – 270 Ом). Если все проходит штатно и результаты проверки устраивают пользователя, можно подключать аккумулятор и пробовать его заряжать.
В завершении для наглядности рекомендуем серию тематических видео.
Зарядное устройство из компьютерного блока питания
Понадобилась зарядка для аккумулятора автомобиля. Перебрав несколько вариантов, остановился на переделке блока питания компьютера. Переделывать решил по-простому. Зарядное не будет иметь регулировок, нет у меня такой задачи. В принципе можно все сделать за пару часов.
Для самоделки нам понадобится:
– блок питания АТХ;
– провода;
– зажимы типа «крокодил»;
– сетевой выключатель;
– фольгированный стеклотекстолит;
– пластик plexiglas;
– радиокомпоненты;
– инструменты.
О комплектующих.
Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.
Данный блок питания имеет на борту малоизвестную микросхему 2003. По данной микросхеме мало информации. Вроде как это ШИМ контроллер с мультивизором. Будем разбираться по схеме, о схеме далее.
Подключаться к аккумулятору буду при помощи проводов с «крокодилами». У меня уже были распаянные.
В роли сетевого выключателя у меня тумблер ТВ2-1. Выдернул со старого телевизора.
Схема блока питания довольно простая. Блок у нас на 300 Ватт, схема на 250 Ватт. Схема может отличаться номиналами некоторых компонентов.
Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.
Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.
Выпаиваем лишние компоненты. На схеме все разборчиво. Получается плата вот такая. Временно выпаял силовые диоды. Так же выпаял дроссель групповой стабилизации, его буду перематывать. Коричневой перемычкой замкнуты пятачки от земли и PS-ON, необходимо для запуска.
Нас интересует линия +12 вольт. Ставим на место силовой диод, я взял диод с линии 5 вольт. Диод установил без прокладки. Ножки крепления радиатора не связаны со схемой, что исключает замыкание. Установил дополнительный дроссель, на его месте стояла перемычка. Со старого дросселя групповой стабилизации смотал все обмотки, оставил старую обмотку на 12 вольт. Установил электролитический конденсатор на 1000 мкф, напряжением 35 вольт.
Переменный резистор вынес на проводах за пределы платы.
Теперь нужно изготовить плату – обманку для нашей микросхемы 2003. Обманка состоит из трех стабилизаторов на» 3.3; 5; 12 вольт. Распаял по простой схеме. Два верхних отрезка собраны на TL431, нижний на LM317.
Верхние два отрезка схемы подключаются к нижнему отрезку на 12 В. Платку, сделал по технологии «процарапывания». Делается за минут 30.
На схеме были указаны точки для подключения платы «обманки». Распаиваем согласно со схемой. На схеме отмечено зелеными точками соответственно. Плата «обманка» имеет цвета согласно напряжениям. Получилось что-то подобное.
Переменным резистором устанавливаем на выходе нужное напряжение (забыл сфотографировать). Оставляю стоп кадр. Измеряю, сопротивление резистора получилось около 11.7 кОм. Собираю из двух резисторов на 10 и 1.8 кОм. Напряжение чуть изменилось, но не значительно.
Плату «обманку» прикрутил к радиатору, через втулку и винт М3. Так же на фото слева видно, что я установил обратно нагрузочный резистор R53.
Подключил провода с зажимами «крокодилами». Установил светодиод для индикации включения. Все закрепил термо клеем. Сетевой провод пустил в разрыв через тумблер.
Первоначально не думал ставить пластину на переднюю панель, но прикрутил. Так выглядит приличней. Такое вот гаражное зарядное устройство получилось. Единственное чего нет в данном устройстве, это защиты от КЗ и переполюсовки. Позже возможно добавлю.
Подробная сборка отображена на видео:
Делаем своими руками зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука
Аккумуляторная батарея — устройство, которое в ходе эксплуатации изнашивается и разряжается. Для заряда АКБ используется специальный прибор, который можно купить или сделать своими руками. О том, как соорудить зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука, мы расскажем ниже.
Как сделать зарядку для АКБ из блока питания компьютера?
Готовимся к выполнению задачи
Зарядное устройство из БП ноутбука
Без переделки БП
С переделкой блока питания
Как правильно зарядить АКБ самодельной зарядкой?
Видео «Наглядная инструкция по сборке ЗУ из блока питания»
Комментарии и Отзывы
Как сделать зарядку для АКБ из блока питания компьютера?
Стоимость качественных зарядных приборов высокая. Поэтому многие автовладельцы решают переделать блок питания АТХ от стационарного ПК в ЗУ. Эта процедура не особо сложная, но прежде чем приступить к выполнению задачи и переделать блок питания на зарядку, которая сможет заряжать машинную АКБ, следует разобраться в требованиях, которые предъявляются к ЗУ. В частности, максимальный уровень напряжения, подводимый к АКБ, должен быть не более 14,4 вольта, чтобы не допустить быстрого износа батареи.
Пользователь Vetal в своем ролике показал, как можно переделать БП в зарядный прибор.
Готовимся к выполнению задачи
Чтобы соорудить самоделку ЗУ из компьютерного БП на 200W, 300W либо 350W (ШИМ 3528), потребуются следующие материалы и инструменты:
- зажимы («крокодилы») для подключения к АКБ;
- резисторный элемент на 2,7 кОм, а также на 1 кОм и 0,5 Вт;
- паяльник с оловом и канифолью;
- две отвертки (с крестовым и плоским наконечником);
- резисторные элементы на 200 Ом и 2 Вт, а также на 68 Ом и 0,5 Вт;
- обычное машинное реле на 12В;
- два конденсаторных элемента на 25В;
- три диода 1N4007 на 1 ампер;
- светодиодный элемент (любого цвета, но лучше — зеленый);
- силиконовый герметик;
- вольтамперметр;
- два гибких медных провода (1 метр каждый).
Также потребуется сам блок питания, который должен иметь следующие характеристики:
- величина выходного напряжения — 12 вольт;
- параметр номинального напряжения — 110/220 В;
- величина мощности — 230 Вт;
- параметр максимального тока — не выше 8 ампер.
Пошаговая инструкция
Процедура заряда машинной батареи производится под напряжением, величина которого от 13,9 до 14,4 вольта. Все стационарные блоки работают с напряжением 220 В, поэтому первостепенная задача — снизить рабочий параметр до 14,4 В. В основе зарядного девайса применяется микросхема TL494 (7500), при ее отсутствии можно использовать аналог. Микросхема нужна для генерирования сигналов и используется как драйвер транзисторного элемента, предназначенного для защиты прибора от повышенного тока. На дополнительной плате БП имеется еще одна схема — TL431 либо другая, аналогичная, предназначенная для регулировки параметра напряжения на выходе. Здесь же располагается резисторный элемент для настройки, с помощью которого можно отрегулировать величину выходного напряжения в узком интервале.
Подробно о том, как переделать компьютерный БП в зарядный прибор для АКБ машины, узнайте из ролика, опубликованного каналом «Паяльник TV».
Чтобы произвести своими руками переделку БП от компа в зарядку для авто, ознакомьтесь со схемой и следуйте инструкции:
- Для начала из компьютерного БП ATX надо демонтировать все лишние составляющие и элементы, после чего от него отпаиваются кабели. Воспользуйтесь паяльником, чтобы не повредить контакты. Надо удалить переключатель 220/110 вольт с кабелями, подключенными к нему. После удаления переключателя вы сможете предотвратить возможность перегорания БП, если случайно переключите его на 110 В.
- Затем от устройства отпаиваются и удаляются ненужные кабели. Уберите провод синего цвета, подключенный к конденсаторному элементу, воспользуйтесь паяльником. В некоторых БП к конденсатору подсоединяется два провода, удалить следует оба. Также на плате вы увидите пучок кабелей желтого цвета с выводом на 12 вольт, их должно быть четыре штуки, оставляйте все. Здесь же должно быть четыре провода черного цвета, их тоже надо оставить, поскольку это масса или заземление. Надо оставить еще один зеленый проводок, все остальные убираются.
- Обратите внимание на схему. По проводку желтого цвета вы сможете найти два конденсаторных элемента в электроцепи на 12 вольт. Их рабочий параметр напряжения составляет 16 В, поэтому сразу же удалите их путем выпаивания и установите два конденсатора на 25 В. Конденсаторные элементы вздуваются и становятся неработоспособными. Если даже они целые и с виду рабочие, рекомендуем их поменять.
- Теперь надо выполнить задачу, чтобы блок питания при каждом включении в бытовую сеть автоматически активировался. Суть в том, что когда БП установлен в компьютере, его активация осуществляется в случае замыкания определенных контактов на выходе. Надо удалить защиту от скачков напряжения. Этот элемент предназначен для автоматического отключения БП компьютера от бытовой сети в случае перенапряжения. Удалить его надо, потому что для оптимальной работы ПК требуется 12 вольт, а для функционирования зарядного устройства надо 14,4 В. Защита, установленная в блоке, воспримет 14,4 вольта как скачок напряжения, в результате чего ЗУ отключится и не сможет зарядить аккумулятор автомобиля.
- К оптрону на плате проходят два импульса — действия от защиты по скачкам напряжения отключения, а также активации и деактивации. В общей сложности на схеме имеется три оптрона. Благодаря этим элементам осуществляется связь между входной и выходной составляющими блока. Эти части называются высоковольтными и низковольтными. Для того чтобы защита не срабатывала при скачках напряжения, вам следует замкнуть контакты оптрона, это можно сделать при помощи перемычки, выполненной из припоя. Это действие позволит обеспечить бесперебойную работу БП, когда он будет включен в бытовую сеть.
- Теперь надо добиться того, чтобы величина исходящего напряжения составила 14,4 вольта. Для выполнения задачи потребуется плата TL431, установленная на дополнительной схеме. Благодаря этому компоненту выполняется настройка напряжения на всех каналах, идущих от устройства. Для увеличения рабочего параметра потребуется подстроечный резисторный элемент, расположенный на этой же схеме. С его помощью вы сможете увеличить напряжение до 13 вольт, но этого недостаточно для оптимальной работы зарядного устройства. Поэтому резистор, подключенный последовательно с подстроечным компонентом, подлежит замене. Его следует выпаять, а вместо него установить аналогичную деталь, сопротивление которой должно быть ниже 2,7 кОм. Это позволит увеличить диапазон регулировки выходного параметра и получить необходимые 14,4 вольта.
- Удалите транзисторный элемент, установленный рядом с платой TL431. Эта деталь может негативно повлиять на функциональность схемы. Транзистор будет мешать устройству поддерживать нужное напряжение на выходе. На фото ниже вы увидите элемент, он отмечен красным.
- Чтобы девайс для зарядки АКБ имел стабильное напряжение на выходе, надо повысить рабочий параметр нагрузки по каналу, где проходило напряжение в 12 вольт. Есть дополнительный канал на 5 вольт, но его использовать не надо. Для обеспечения нагрузки потребуется резисторный компонент, рабочая величина сопротивления которого составит 200 Ом, а мощность — 2 Вт. На дополнительный канал устанавливается деталь на 68 Ом, величина мощности которой составляет 0,5 Вт. Когда резисторные элементы будут припаяны, вы сможете отрегулировать величину напряжения на выходе до 14,4 вольта, при этом не потребуется нагрузка.
- Затем следует ограничить выходную величину силы тока. Этот параметр индивидуален для любого блока питания. У нас величина силы тока должна быть не более 8 ампер. Чтобы обеспечить это, потребуется повысить номинал резисторного компонента, установленного в первичной цепи обмотки, рядом с трансформаторным устройством. Последнее используется в качестве датчика, предназначенного для определения значения перегрузки. Для увеличения номинальной величины, резистор подлежит замене, вместо него монтируется компонент с сопротивлением на 0,47 Ом, а величина мощности составит 1 Вт. Осторожно выпаивается резистор, вместо него впаивается новый. После выполнения этой задачи деталь будет использоваться в качестве датчика, поэтому величина силы тока на выходе будет не более 10 ампер, даже если произойдет замыкание.
- Для обеспечения защиты машинной АКБ от неправильной полярности при подсоединении самодельного зарядного девайса в устройство устанавливается дополнительная схема. Речь идет о плате, которую вам предстоит сделать самостоятельно, поскольку в самом блоке ее нет. Для ее разработки потребуется подготовленное реле на 12 вольт, в котором должно быть четыре клеммы. Также понадобятся диодные компоненты, сила тока которых составит 1 ампер. Как вариант, можно использовать детали 1N4007. Схема должна быть дополнена светодиодом, который будет свидетельствовать о состоянии процесса зарядки. Если лампочка горит, то машинная АКБ подсоединена к зарядному устройству правильно. Помимо этих компонентов, потребуется резисторный элемент, рабочее сопротивление которого составит 1 кОм, а мощность — 0,5 Вт. Принцип действия схемы такой. АКБ подсоединяется через кабели к выходу самодельного зарядного устройства. Происходит активация реле благодаря энергии, которая осталась от аккумулятора. После срабатывания элемента начинается процесс зарядки от ЗУ, о чем свидетельствует активация диодной лампочки.
- При деактивации катушки в результате воздействия электродвижущей силы самоиндукции происходит скачок напряжения. Чтобы не допустить его негативного воздействия на работу зарядного девайса, в плату надо добавить два диодных компонента параллельным способом. Реле фиксируется на радиаторном устройстве БП при помощи герметика. Благодаря этому материалу можно обеспечить эластичность, а также невосприимчивость деталей к термическим нагрузкам. Речь идет о сжатии и расширении, о прогревании и охлаждении. Когда клей высохнет, к контактам реле надо подсоединить оставшиеся компоненты. Если герметик отсутствует, для фиксации подойдут обычные болты.
- На последнем этапе к блоку подключаются провода с «крокодилами». Лучше применять кабели разных цветов, к примеру, черного и красного или красного и синего. Это позволит не допустить спутывания полярности. Длина провода будет не меньше одного метра, а их сечение должно составить 2,5 мм2. К концам кабелей подключаются зажимы, предназначенные для фиксации на клеммах аккумулятора. Чтобы зафиксировать провода на корпусе самодельного зарядного девайса, в радиаторном устройстве просверливаются два отверстия соответствующего диаметра. Через получившиеся отверстия продеваются две нейлоновые стяжки, с помощью которых кабели будут фиксироваться. В зарядное устройство можно вмонтировать амперметр, он позволит контролировать величину силы тока. Подключение прибора осуществляется параллельным образом к цепи БП.
- Остается протестировать работоспособность собранного своими руками ЗУ.
Зарядное устройство из БП ноутбука
Можно соорудить зарядный девайс из блока питания ноутбука.
Напрямую подключать БП к аккумуляторным клеммам нельзя.
Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.
Без переделки БП
Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.
Канал It’s simple опубликовал ролик, в котором наглядно показал, как выполнить подзарядку машинного аккумулятора с помощью обычного БП от ноутбука и лампочки.
С переделкой блока питания
Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.
Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:
- Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
- Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
- Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
- Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
- Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
- Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
- Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный — в виде оплетки.
- В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.
Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.
Как правильно зарядить АКБ самодельной зарядкой?
Чтобы не допустить быстрого выхода из строя АКБ, надо учитывать определенные нюансы по правильной подзарядке.
- Сначала отключите клеммы батареи от зажимов. Открутите болты, которые крепят фиксирующую планку аккумулятора.
- Демонтируйте устройство из посадочного места, отнесите домой или в гараж.
- Прочистите корпус от загрязнений. Обратите внимание на сами клеммы. Если на них есть окисления, их следует очистить. Используйте зубную или строительную щетку, подойдет наждачная бумага мелкой зернистости. Главное — не счистить рабочий налет.
- Если аккумулятор обслуживаемый, откройте все его банки и проверьте в них уровень электролита. Рабочий раствор должен покрывать все секции. Если это не так, то заряд батареи может привести к быстрому испарению кипящей жидкости, что отразится на функциональности батареи и ее исправности в целом. При необходимости добавьте в банки дистиллированную воду. Визуально осмотрите корпус батареи на предмет дефектов, иногда утечка жидкости связана с наличием трещин. Если повреждения серьезные, то АКБ подлежит замене.
- Подключите зажимы самодельного ЗУ к клеммам АКБ, соблюдая полярность. После этого девайс можно подключать к бытовой сети. Пробки на банках при этом откручивать не надо.
- Когда процедура заряда будет завершена, проверьте уровень электролита и если все нормально, то закрутите банки. Установите батарею в автомобиль и убедитесь, что она в рабочем состоянии.
Заключение
Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет. Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.
Видео «Наглядная инструкция по сборке ЗУ из блока питания»
Канал «Сделай так» предоставил ролик, в котором подробно описан процесс создания и сборки зарядного девайса для машинного аккумулятора из блока питания.
Зарядное из компьютерного блока питания
Здравствуйте. Товарищ подогнал мне плату со старого AT блока питания, так что сегодня речь пойдет о переделке компьютерного блока питания в зарядное устройство. Моя задача настроить выход на напряжение 14,4В и сделать регулятор тока до 6А. Такой зарядное устройство отлично подойдет для автомобильных стартерных аккумуляторов до 80A ч.
Плата долгое время пылилась на полках в гараже, поэтому пыль легла хорошим слоем. Часть деталей отсутствует, плата сломана пополам
В первый раз вижу такую удобную плату для переделки в зарядное. Лишних деталей не так много, ШИМ стоит, который является полным аналогом TL494, так что много время переделка не займет.
Подался в интернет в поисках подходящей схемы. Схем похожих валом, но самая подходящая вот она.
Схема отличная, но надо вырезать все лишнее. Убрал цепи шин 5В,3В,-5-12В, оставил только 12В, цепь PG тоже убрал.
После переделок схема выглядит примерно так.
А блок питания постепенно менялся, ремонтировался и модернизировался. Ну первым делом очистил плату от загрязнений, снял лишние детали и на шину 12В подал 15В от лабораторного блока питания. На развязывающем трансформаторе есть прямоугольные импульсы, значит генератор работает исправно.
Проверил что происходит на силовых транзисторах. Осциллограф слабый и криминального ничего не показал. Кто не знает, что за осциллограф, почитайте о нем статью Осциллограф DSO138.
Ну и проверю сами силовые ключи с помощью мультиметра.
Плата была немного сломана и пришлось небольшие перемычки кинуть. Далее смотал старый дроссель и заново проложил обмотку на 5 витков больше, чем была обмотка 12В. Припаял пока одну емкость 25В 2200мкФ и заменил номинал резистора по схеме R30 . Резистор подбирал следующим образом, подключил 14,4В на шину 12В, замерил напряжение на второй ноге 2,56В TL494, вместо R30 поставил переменный 20 кОм и вращая добился 2,56В на первой ноге ШИМ, затем переменный резистор заменил на постоянный. Поставил радиатор на место и конденсаторы нашел в коробке 470мкФ 200В в первичных цепях, так же проверил диодный мост, предохранитель и резистор заменил на 1Ом 10Вт. Блок готов к безопасному пуску через лампу и надеюсь увидеть 14,4В на выходе.
Питание уже есть, лампа вспыхнула и погасла, спираль не подсвечивает и на выходе есть искомые 14,4В.
Микросхема питается от 24В, так и должно быть. Попробую нагрузить на нихромовую спираль 1,5Ом. Ток на старте был 10А, но упал до 9,4А.
При такой нагрузке на самой плате 14,4В, на клемах на вольт меньше за счет просадки в кабеле. Общая мощность где то 150Вт. Можно грузить еще, но обмотка рассчитана примерно на 5А, поэтому от блока буду брать только 6А 🙂Кстати во время испытаний пару раз клемы выхода соединялись и блок уходил в защиту. Схема перезапускается после прерывания питания от сети 220В, это защита на двух транзисторах от сверх допустимой мощности .
Теперь нужно сделать регулятор тока от 0 до 6А. Нужно изменить схему, добавит 5 деталек, на столе под нагрузкой 6А все выглядит так.
Полностью готовая плата. В корпус устанавливать не буду, положу на полку до лучшего времени Ну и добавлю полностью готовую схему после всех переделок.
15 ногу отрезал от ИОН 5В и на проводке припаял напряжение с делителя. В качестве шунта использовал резистор 25Вт 0,05Ом. Место шунта на схеме не очень удачно выбрано, так как учитываться будет ток потребления самой платы. Что бы зарядка не уходила в защиту при крайнем нижнем положении переменного резистора, между резистором и общим минусом впаял резистор 150 Ом. Делителем, который питается от средней ножки переменного резистора, выставляется максимальный ток. То есть, если на шунте 0,05Ом при 6А падает 0,3В, то на делителе с 5 вольт должно получиться 0,3В
На этом переделка закончена, спасибо за внимание. Хотя нужно бы добавить сюда защиту от переполюсовки, но это другая история.
Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа
Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства
Зарядное устройство 12В 1.3А
Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.
Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна
Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку
Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.
Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач
Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку
Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
Делаем зарядное устройство из блока питания компьютера
Аккумулятор автомобиля – часть системы, которая при длительном использования теряет заряд. Для восполнения запасов энергии используют готовые приборы. Можно самостоятельно сделать зарядное устройство из компьютерного блока питания.
Как сделать зарядку для АКБ из блока питания компьютера?
При сборке зарядного блока соблюдают требования, делающие прибор пригодным для восстановления работы аккумулятора. Выходное напряжение не должно превышать 14,4 В. В противном случае источник питания быстро выйдет из строя.
Необходимые материалы и инструменты
Для сборки устройств различной мощности используют такие материалы и инструменты:
- Зажимы. Используются для подсоединения питающих кабелей к клеммам батареи.
- Резисторы R43. Рекомендуется приобрести детали номиналом 2,7 и 10 кОм.
- Отвертки. Потребуются крестовая и плоская насадки.
- Конденсаторы. Необходимый номинал – 25 В.
- Диоды 1N4007.
- Светодиодная лампочка. Рекомендуется выбирать элемент зеленого цвета.
- Силиконовый герметик.
- Мультиметр.
- Медные кабели. Потребуется 2 провода длиной 1 м.
Блок питания компьютера должен иметь такие параметры:
- выходное напряжение – 12В;
- номинальное входное напряжение 110/220 В;
- потребляемая мощность – 230 В;
- максимальная сила тока – 8 А.
Пошаговая инструкция
Компьютер питается от блока с напряжением 220 В, этот параметр для зарядного устройства должен составлять не более 14,4 В. Главная задача – снижение рабочего показателя.
Для этого используется резистор, обеспечивающий регулировку выходного напряжения во всех режимах. Процесс сборки зарядки своими руками включает такие этапы:
- Подготовка компьютерного блока. Деталь освобождают от лишних элементов, после чего отключают все кабели. Контакты разъединяют путем нагревания. Необходимо снять переключатель напряжения. Это позволяет избежать перегорания устройства. Удаляют оба кабеля, подведенных к конденсатору в цепи. На микросхеме находится 4 провода желтого цвета. Их демонтировать не нужно. Оставляют и 4 черных кабеля, а также 1 зеленый.
- Осмотр микросхемы. Провод желтого цвета подключается к конденсаторам на 12 В. Этого параметра недостаточно для зарядки автомобильной АКБ, поэтому детали заменяют элементами номиналом 25 В.
- Обеспечение автоматического включения блока. Если устройство встроено в компьютер, оно активируется при замыкании некоторых контактов. Необходимо снять средство защиты от перепадов напряжения. Защита принимает повышение параметра до 14,4 В за скачок, в результате чего зарядка перестает функционировать. Схема снабжена 3 оптронами, обеспечивающими связь между передатчиками входного и выходного напряжения. Деактивируют элементы путем замыкания контактов.
- Получение нужного значения напряжения. Для этого устанавливают плату TL431. Компонент настраивает напряжение, поступающее по всем каналам устройства. Для повышения рабочего параметра используют резистор. Однако он дает недостаточное напряжение. Встроенный резистор заменяют новым, имеющим сопротивление менее 2,7 кОм.
- Удаление транзистора. Элемент, расположенный рядом с платой TL431, может препятствовать нормальной работе зарядного блока. Его нужно снять.
- Стабилизация выходного напряжения. Необходимо улучшить параметры канала, пропускающего ток 12 В. Использовать вспомогательные схемы с напряжением 5 В нельзя. Требуемую нагрузку обеспечивает резистор с сопротивлением 200 Ом. Дополнительный канал снабжается элементом номиналом 68 Ом. После монтажа резисторов можно отрегулировать напряжение.
- Ограничение силы выходного тока. Этот параметр на выходе блока не должен превышать 8 А. Для получения нужного значения повышают сопротивление резистора, включенного в электрическую цепь обмотки трансформатора. Деталь заменяют элементом большего номинала. Старый резистор выпаивают, после чего фиксируют новый. После выполнения этого действия сила тока не будет повышаться даже при замыкании.
- Установка дополнительной схемы. Плата не входит в комплект блока, поэтому ее делают своими руками. Для этого потребуется реле с 4 клеммами на 12 В. Схему снабжают диодом, отражающим процесс зарядки. Если лампочка горит, зарядное устройство подключено к аккумуляторной батарее правильно.
- Обеспечение защиты от перепадов напряжения. 2 диода соединяются параллельно. Реле закрепляют на вентиляторе компьютерного блока силиконовым герметиком. При отсутствии такого средства используют болты.
- Подсоединение проводов с зажимами. Рекомендуется использовать разноцветные кабели, что позволяет соблюдать полярность. К зарядному блоку провода прикрепляют нейлоновыми стяжками, которые пропускают через просверленные заранее отверстия. Для измерения силы тока заряда устройство снабжают амперметром. К электрической цепи прибор подключается параллельным способом.
- Проверка работоспособности зарядного устройства.
Зарядное устройство из БП ноутбука
Блок питания ноута имеет выходное напряжение в 19 В, параметр нужно снижать. Для этого используют 2 метода.
Без переделки
Способ подразумевает последовательное соединение АКБ автомобиля с мощной лампой. Осветительный прибор будет отнимать часть напряжения. Один контакт лампы соединяется с плюсовой клеммой питающего блока, другой – с плюсом АКБ. После этого зарядное устройство подключают к электрической сети.
Лампа при использовании этого способа быстро выходит из строя, что приводит к перезаряду и взрыву аккумулятора.
С переделкой блока питания
Процесс переделки источника питания ноутбука включает такие этапы:
- Разборка корпуса. Работу выполняют аккуратно, стараясь не повредить пластиковые детали, которые пригодятся для дальнейшего использования. Внутреннюю плату подключают к вольтметру, точно определяющему напряжение. Чаще всего оно составляет 19 В.
- Снижение напряжения. Для этого заменяют резистор, расположенный на выходе. Деталь соединяет шестой контакт микросхемы ТЕА1761 с плюсовой клеммой питающего блока. Элемент удаляют с помощью паяльника. Мультиметром замеряют сопротивление детали. Рабочее значение – 18 кОм. Вместо удаленного элемента устанавливают временный номиналом 22 кОм. Перед монтажом сопротивление настраивают на 18 кОм. Резистор запаивают, не затрагивая других компонентов схемы. Постепенным изменением сопротивления достигают снижения напряжения до 14,4 В.
- Удаление резистора. После получения нужного напряжения деталь снимают и замеряют сопротивление. Оно должно составлять 12,5 кОм. На основании этой величины выбирают постоянный резистор. Можно использовать 2 детали номиналом 10 и 2,5 кОм. Концы резистора устанавливают в термокембрик и припаивают к плате.
- Тестирование схемы. Перед сборкой заменяют выходные параметры тока. Значения в 14,2 В достаточно для зарядки автомобильного аккумулятора.
- Сборка устройства. С соблюдением полярности припаивают провода с зажимами. Минусовой контакт может иметь вид главного провода, плюсовой – оплетки.
В результате получается зарядное устройство с выходной силой тока 3 А. При падении параметра процедура зарядки считается законченной. Удобство пользования обеспечивает амперметр, включаемый в схему прибора.
Как правильно зарядить АКБ самодельной зарядкой?
Чтобы батарея не вышла из строя, при восстановлении заряда соблюдают такие правила:
- АКБ отсоединяют от бортовой сети автомобиля. Для этого снимают болты, удерживающие фиксатор аккумулятора. Устройство вынимают из гнезда и относят в отапливаемое помещение.
- Корпус АКБ очищают от загрязнений. Особое внимание удаляют клеммам. Их очищают от остатков электролита зубной щеткой или наждачной бумагой. Главное – не удалить рабочее напыление.
- Открыв банки АКБ, проверяют уровень электролита. Раствор должен полностью скрывать металлические пластины. При снижении уровня жидкости образуются газы, приводящие к взрыву. При необходимости банки заполняют дистиллированной водой.
- Корпус осматривают на наличие сколов и трещин. При обнаружении крупных дефектов батарею заряжать нельзя.
- При подключении зарядного прибора соблюдают полярность. Если все выполнено правильно, устройство подключают к сети. Снимать колпачки банок не нужно.
После восстановления заряда оценивают количество электролита. Если оно не изменилось, аккумулятор можно устанавливать в автомобиль.
Стартер не крутит — причины поломки и способы восстановления
Стартер – одно из основных звеньев в системе зажигания. Корректная работа этого узла отвечает за пуск ДВС. Причины, по которым механизм может выйти из строя: проблемы с втягивающим реле, разряженный АКБ, размыкание контактов массы, неисправность зажигания, нарушение целостности электропроводки и т.д. Подробнее механизм развития, диагностику неисправностей и способы их устранения разберем в статье.
Диагностика неисправностей
Часто можно услышать от автолюбителей фразу: «Я сажусь в машину, поворачиваю ключ в замке зажигания, и ничего не происходит». Это происходит из-за поломки стартерного узла или его электроники, если:
- под крышкой капота раздаются посторонние звуки (щелчки, звон, жужжание), но ничего не происходит;
- двигатель не заводится;
- стартер при запуске крутит, а мотор не заводится;
- коленчатый вал крутится медленно, а двигатель молчит;
- слышны стуки под капотом, треск шестеренок и скрежет.
Наиболее частые причины поломок
Это неисправности в электрической цепи. К ним относят:
- заряд аккумулятора меньше12 в;
- окисление контактов;
- отсутствие тока на втягивающем реле;
- поломки втягивающего реле;
- износ щеточного узла;
- износ коллектора якоря.
В случае, когда не срабатывает втягивающее, и стартер молчит при повороте ключа, поломка может быть следствием короткого замыкания или обрыва на заземление тягового реле, или КЗ витка.
Виновником является электроника и в том случае, если при срабатывании зажигания и запуске мотора, диск маховика вращается слишком медленно.
О механических причинах неисправностей можно судить по отсутствию вращения коленвала при рабочем стартере. При повороте ключа двигатель может не работать в следующих случаях:
- сломана пробуксовая муфта;
- неисправен или отсоединился рычаг отключения от оси;
- изношена буферная пружинка;
- сломано или изношено поводковое кольцо.
Стартер не откликается на запуск зажигания
Самый распространенный вариант поломки – когда стартер не реагирует на поворот ключа зажигания. В первую очередь, следует правильно определить, на каком уровне возникла неисправность и устранить ее.
Разряд или выход из строя аккумулятора
Водитель может забыть выключить свет, или оставить какой-то другой источник включенным, который полностью разрядит батарею. Также может произойти замыкание банок электролитов или поломка пластин. В первом случае, достаточно будет подзарядить АКБ, а в остальных – поменять его на новый.
Отсутствие контакта в цепи стартера
Происходит в результате коррозии металла или ослабления болтовой затяжки проводов. Кроме этого, нужно проверить заземление втягивающего и основного реле стартерного узла. Проверить электронику автомобиля можно с помощью мультиметра. Перед этим осмотрите проводку, подтяните болты и проверьте клеммы. Если есть отход контактов, то восстановите их целостность.
Поломка втягивающего реле
Случается из-за обрыва обмотки, физических повреждений или КЗ. При этой проблеме стартер щелкает один раз, но не крутит двигатель. Релейный механизм подлежит замене, если это неразборная модель, а разборные варианты подлежат восстановлению.
Как завести транспортное средство, если стартерный узел неисправен
Для того чтобы завести автомобиль, вам потребуется выполнить следующий алгоритм действий:
- Поставьте машину на ручник.
- Переведите КПП в нейтраль.
- Поверните ключ в замке зажигания и откройте капот.
- Демонтируйте воздушный фильтр со стороны водителя для легкого доступа к контактам узла.
- Скиньте фишку со стартера.
- Замкните клеммы.
При условии исправного и заряженного АКБ автомобиль заведется. Все остальные механизмы должны быть в рабочем состоянии. Этот способ подойдет для аварийных моментов, и ни в коем случае не стоит пользоваться им постоянно.
Почему двигатель вращается неэффективно
Возникают моменты, когда стартер работает, но не крутит двигатель с нужной силой. Перечислим ситуации, когда это происходит:
- При эксплуатации масла, которое не соответствует температурному режиму. Смазка густеет и не дает коленчатому валу вращаться. Требуется замена смазочной жидкости на регламентированную для данных погодных условий.
- Низкий заряд АКБ. Не дает энергии на эффективное вращение. Нужна подзарядка или замена аккумулятора.
- В случае неисправности щеточного узла. Нужно проверить контакты щеток и силу затяжки наконечников, идущих к детали.
Стартерный узел не вращает мотор под действием силы
Тому, что не крутит стартер под нагрузкой, способствуют нижеперечисленные причины:
- люфт передней втулки стартера;
- раннее зажигание;
- износ щеточного узлового механизма;
- появление дефектов контактов втягивающего реле.
Механизм не функционирует на горячем двигателе
Ответ на вопрос, почему не крутит стартер на горячую, лежит на поверхности. Втулки при работе двигателя расширяются, узел начинает «клинить», или же он выходит из строя. Как правило, это проблема возникает у автомобилей с большим пробегом. Почему это происходит, рассмотрим в таблице.
Причина неисправности | Решение |
Износ штатных втулок | Замена |
Плохие контакты | Зачистить, подтянуть, обработать контакты |
Уменьшение сопротивления изоляции обмотки статора | Заменить обмотку |
Окисленные контактные пластины в реле | Почистить или заменить |
Посторонние частицы в корпусе стартерного узла | Провести очистку |
Износ щеточного узла | Чистка щеток или замена узла |
Отсутствие крутящего момента стартерного механизма при холодном моторе
На холодную не заводится машина, а стартер не крутит в случаях: при разряженном аккумуляторе, слабом контакте силовых проводов или при износе самой детали. Также вероятной причиной неисправности автомобиля, выступает заклинивание реле или износ щеток.
Деталь не работает ни на холодную, ни на горячую
Причинами того, стартер не крутит, не заводит транспорт и не щелкает, могут быть:
- отслойка магнитов;
- нарушение целостности предохранителей контактной группы;
- обрыв провода управления, подающегося на стартер. Проведите аварийный запуск двигателя. Если помогло – причина в зажигании, если нет – в проводе;
- поломка возвратной пружины.
Почему стартерный узел и втягивающее реле издают посторонние звуки
Если стартер щелкает, то устройство работает. Работа реле начинается при встрече двух разнозаряженных полюсов, которые издают щелчок. Удовлетворительная работа узла обеспечивается исправностью остальных механизмов:
- аккумулятора;
- контактного и втягивающего реле;
- зажигания.
Узел не работает, а релейный элемент издает щелчок в случае окисления контактов, проводов, и отсутствия надежного крепления.
Механизм издает щелчки, но не вращает
Когда стартер щелкает один раз, но не запускает двигатель, это значит, что узлу требуется ремонт. Нужно попытаться повторно завести машину. Если не получилось, то вероятно дело в следующем:
- сломан бендикс;
- оборвалась обмотка стартера;
- произошло короткое замыкание;
- неисправно втягивающее реле;
- изношены щетки.
В таком случае нужно провести замену деталей.
Не получается завести ДВС
Стартер при попытке пустить мотор не должен выдавать посторонних звуков. Гул должен быть ровным и монотонным. Если этот узел исправен, причины поломки следует искать в ДВС, системе зажигания или в электронной схеме. Чаще всего неисправность заключается в топливном блоке, и топливо не поступает в цилиндры.
Заключение
Поломка стартерного узла требует срочного ремонта, без него попросту невозможно использовать машину. Первичную диагностику, используя полученные знания, вы можете провести на месте. Если отсутствует действие, передаваемое деталью, сразу осматривайте контакты, проверяйте аккумулятор и зажигание. Вам приходилось сталкиваться с таким ремонтом? Делитесь своим опытом в комментариях.